首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The experiments on electron irradiation of yttrium-stabilized zirconium oxide samples show the formation of strong elastic fields near interstitial dislocation loops. The fields increase with an increase in the loop radius and, when the loop radius reaches a certain critical value, the loops became unstable due to the beginning of plastic deformation and the formation of a dislocation network. The mechanism of the occurrence of this instability is suggested. It is based on the accumulation of charges at dislocation loops due to ionization processes in an electron-irradiated dielectric. It is shown that the accumulation of the electric charge at growing dislocation loops in dielectrics may be responsible for an increase in elastic stresses near dislocation loops and for their instability because of the beginning of plastic deformation near the loops when stresses at growing loops become close to the theoretical yield stress of the material.  相似文献   

2.
A theoretical model has been proposed for describing the relaxation of misfit stresses in a spherically symmetric composite core-shell nanoparticle due to the generation and expansion of rectangular prismatic dislocation loops at the internal and external interfaces. The critical conditions of the formation of these loops have been calculated for nanoparticles consisting of a relatively massive core and a thin shell. It has been shown that the generation of dislocation loops is possible when the misfit of the lattice parameters of the core and shell of the nanoparticle exceeds a critical value that depends on the nanoparticle radius, the shell thickness, the loop formation position, and the shape of loops. This condition holds for a loop in the shell when the shell thickness either lies in a specific range of small values or (for a larger misfit) is less than a critical value. For the generation of loops in the core, the shell thickness should exceed a critical value. The dislocation loops elongated along the core-shell interface are formed more readily. As the shell thickness increases at a fixed nanoparticle radius, the energetically more favorable generation of a dislocation loop occurs first from the free surface into the bulk of the shell, then from the interface into the shell, and finally from the interface into the core of the nanoparticle.  相似文献   

3.
Clusters of self-interstitial atoms are formed in metals by high-energy displacement cascades, often in the form of small dislocation loops with a perfect Burgers vector. In isolation, they are able to undergo fast, thermally activated glide in the direction of their Burgers vector, but do not move in response to a uniform stress field. The present work considers their ability to glide under the influence of the stress of a gliding dislocation. If loops can be dragged by a dislocation, it would have consequences for the effective cross-section for dislocation interaction with other defects near its glide plane. The lattice resistance to loop drag cannot be simulated accurately by the elasticity theory of dislocations, so here it is investigated in iron and copper by atomic-scale computer simulation. It is shown that a row of loops lying within a few nanometres of the dislocation slip plane can be dragged at very high speed. The drag coefficient associated with this process has been determined as a function of metal, temperature and loop size and spacing. A model for loop drag, based on the diffusivity of interstitial loops, is presented. It is tested against data obtained for the effects of drag on the stress to move a dislocation and the conditions under which a dislocation breaks away from a row of loops.  相似文献   

4.
The dislocation loop size distribution in semiconductors CdTe, ZnTe, ZnSe, ZnS, CdS, GaAs, Si, and Ge has been studied using transmission electron microscopy. The experimental results have been compared with theoretical computations of the critical radii of the transition of partial dislocation loops to full ones with allowance for the dislocation loop formation energy and stacking fault energy of the materials. It has been shown that the critical radius depends on the stacking fault energy and is an important characteristic in the analysis of the defect formation processes in semiconductors.  相似文献   

5.
The deformation mechanism of zinc oxide (ZnO) nanotube has been first examined by molecular dynamics. The result demonstrated that ZnO nanotubes relax it excess strain via the phase transformation from an armchair structure to a fourfold-coordinated structure, then to a zigzag structure, which is started by a slip deformation. In contrast to carbon, silicon carbide, and boron nitride nanotubes, they relax it local stress via the transformation of the Stone?CWales transformation. After yielding, the 8-4 dislocation loops are found and the numbers of 8-4 dislocation loops grow up, which relax the tensile strain at the necking region and leads the work hardening. Finally, the nanotube is broken down by crack deformation at the interface between different phases.  相似文献   

6.
In this work, computer-modeling methods have been used to consider the formation of a dislocation loop. The barrier strengths correspond to the reacting (unactivated) and unreacting (activated) forest dislocations. It is determined that the minimum operating stress of the source coincides with the classical, critical Frank-Read stress only for a rather narrow range of length of the sources. In a majority of the cases, it is comparable to the critical stress for flow past a network of barriers. Beyond the front of the dislocations propagating from the source, dislocation loops formed by the Orowan mechanism remain, the total length of which is equal to 12–14% of the length of the loop formed.Tomsk Structural Engineering Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 20–24, October, 1992.  相似文献   

7.
The critical conditions have been calculated for the generation of circular prismatic loops of misfit dislocations at the interfaces in spherically symmetric composite core-shell nanoparticles. It has been shown that the formation of these loops becomes energetically favorable if the misfit parameter exceeds a critical value, which is determined by the geometry of the system. The most preferred position of the dislocation loop is in the equatorial plane of the nanoparticle. For a given radius of the nanoparticle, there is a minimum value of the critical misfit parameter below which the generation of a misfit dislocation is energetically unfavorable for any ratio of the core and shell radii. For a misfit parameter exceeding the minimum critical value, there are two critical values of the reduced radius of the particle core in the interval between which the generation of a dislocation loop is energetically favorable. This interval increases with increasing misfit parameter for a fixed particle size and decreases with decreasing particle size for a fixed misfit parameter.  相似文献   

8.
A model based on the data available in the literature on the computer simulation of amorphous silicon has been proposed for describing the specific features of the plastic flow of amorphous covalent materials. The mechanism of plastic deformation involves homogeneous nucleation and growth of inclusions of a liquidlike phase under external shear stress. Such inclusions experience plastic shear, which is modeled by glide dislocation loops. The energy changes associated with the nucleation of these inclusions at room and increased temperatures have been calculated. The critical stress has been found, at which the barrierless nucleation of inclusions becomes possible. It has been shown that this stress decreases with an increase in temperature. According to the calculations, the heterogeneous (homogeneous) plastic flow of an amorphous material should be expected at relatively low (high) temperatures. Above the critical stress, the homogeneous flow is gradually replaced by the heterogeneous flow.  相似文献   

9.
A dislocation model is proposed for describing the sliding of hollow fibers (and, in particular, carbon nanotubes) as a mechanism of elastic energy relaxation near cracks in ceramic nanocomposites. In this model, the sliding of a hollow cylindrical fiber occurs through the formation of a prismatic circular dislocation loop gliding along the boundary between the fiber and the matrix. The energy characteristics of this process are calculated, and the critical stress required for the barrierless nucleation and glide of such a loop is determined. It is shown that the critical stress increases with the ratio between the shear moduli of the matrix and the fiber and (over a wide range of changes in this ratio) with the fiber wall thickness.  相似文献   

10.
利用分子动力学方法研究了单晶铜中不同大小的球形空洞在冲击波下的演化过程.模拟结果表明不同大小空洞的塌缩过程不同.模拟中冲击波由空洞左边扫向空洞右边.在较大尺寸的空洞塌缩过程中会产生系列的位错环.当空洞半径较小时,先在空洞的右侧形成位错环,当空洞半径增大到某一临界大小时,在空洞左右两侧同时产生位错环,当空洞半径较大时,先在空洞左侧形成位错环.当空洞左右两侧的位错环均形成以后,其右侧位错环前端的生长速度大于其左侧的.空洞半径增大,相应的位错环前端的生长速度变化不大.当空洞半径增大时,空洞中心指向位错源的矢量方 关键词: 纳米空洞 位错环 冲击波 塑性变形  相似文献   

11.
N. M. Ghoniem  J. Huang 《哲学杂志》2013,93(27):4195-4212
We extend here the Bilby-Eshelby approach of 2-D crack representation with dislocation pileups to treat 3-dimensional cracks of general geometry. Cracks of any specified external bounding 3-D contour under general loading conditions are represented by sets of parametric Somigliana loops that satisfy total (interaction, self, and external) force equilibrium. Loop positions are solved by using a time integration scheme till equilibrium is achieved. The local Burgers vector is suitably adjusted to be proportional to the local applied surface traction on the crack. The developed method is computationally advantageous, since accurate crack stress fields are obtained with very few concentric parametric loops that adjust to the external crack shape and the local force conditions. The method is tested against known elasticity solutions for 3-D cracks and found to be convergent with an increase in the number of pileup dislocation loops. The method is applied to the determination of the stress field around a 3-D Griffith crack under general loading and a grain boundary crack before and after branching.  相似文献   

12.
The classical molecular dynamics method is employed to simulate the interaction of edge dislocations with interstitial Frank loops (2 and 5 nm in diameter) in the Fe-Ni10-Cr20 model alloy at the temperatures T = 300–900 K. The examined Frank loops are typical extended radiation-induced defects in austenitic steels adapted to nuclear reactors, while the chosen triple alloy (Fe-Ni10-Cr20) has the alloying element concentration maximally resembling these steels. The dislocation-defect interaction mechanisms are ascertained and classified, and their comparison with the previously published data concerning screw dislocations is carried out. The detachment stress needed for a dislocation to overcome the defect acting as an obstacle is calculated depending on the material temperature, defect size, and interaction geometry. It is revealed that edge dislocations more efficiently absorb small loops than screw ones. It is demonstrated that, in the case of small loops, the number of reactions accompanied by loop absorption increases with temperature upon interaction with both edge and screw dislocations. It is established that Frank loops are stronger obstacles to the movement of screw dislocations than to the movement of edge ones.  相似文献   

13.
Shielding effect and emission criterion of a screw dislocation near an interfacial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentials and stress fields due to a screw dislocation located near the interfacial blunt crack. The stress intensity factor on the crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of the orientation of the dislocation and the morphology of the blunt crack as well as the material elastic dissimilarity on the shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations can reduce the stress intensity factor of the interfacial blunt crack tip (shielding effect). The shielding effect increases with the increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuth angle. The critical loads at infinity for dislocation emission increases with the increase of emission angle and curvature radius of blunt crack tip, and the most probable angle for screw dislocation emission is zero. The present solutions contain previous results as special cases.  相似文献   

14.
H.P. Song  Q.H. Fang  Y.W. Liu 《哲学杂志》2013,93(14):1969-1983
The interaction between a screw dislocation and an interfacial cruciform crack and collinear linear cracks under loads at infinity was investigated. General solutions of complex potentials to this problem were derived by using complex potential theory. As illustrative examples, the closed form solution for a screw dislocation interacting with an interfacial cruciform crack and a linear crack is obtained. The stress intensity factor and critical stress intensity factor for dislocation emission are also calculated. The results show that the shielding effect increases with the increase of the shear modulus and the distance between the two cracks, but it decreases with the increase of dislocation azimuth and the distance between the dislocation and the cruciform crack tip. The critical loads at infinity for dislocation emission increase with the increment of the emission angle, the distance the two cracks and the vertical length of the cruciform crack.  相似文献   

15.
16.
Elastic-energy relaxation in systems with nanoinclusions is considered. The relaxation is related to the formation of the following dislocation loops: a single misfit dislocation loop or a group of such loops on the matrix-nanoinclusion interface and/or a satellite dislocation loop near the inclusion. The critical inclusion sizes beginning from which misfit dislocation loops and satellite dislocation loops can nucleate are determined for various models of relaxation processes. The dependences of the satellite-dislocation-loop diameter on the inclusion size are calculated and compared with experimental data.  相似文献   

17.
ABSTRACT

The dependence of the interactions of intermediate-size ½<111> self-interstitial atom (SIA) loops with an edge dislocation on strain rate and temperature was investigated by molecular dynamics (MD) simulations for the interatomic potential derived by Ackland et al. (A97). For low temperatures (T?=?1?K), the mechanisms of the interactions were in agreement with recent literature. It was shown that a second passing of the dislocation through the loop led to a different mechanism than the one that occurred upon first passing. Since these mechanisms are associated with different SIA loop sizes, and since the loop lost a number of SIAs upon first interaction, it was deduced that the dividing threshold between large and small loops (rendering them strong or weak obstacles, respectively) is at the vicinity of the loop size studied (169 SIAs). For higher temperatures (T?=?300?K), the strain rate dependence proved strong: for low strain rates, the dislocation absorbed the loop as a double super-jog almost immediately and continued its glide unimpeded. For a high strain rate, the dislocation was initially pinned due to the formation of an almost sessile segment leading to high critical stress.  相似文献   

18.
Dynamic drag of edge dislocations by prismatic dislocation loops has been studied. It has been shown that the appearance of activation in the vibration spectrum of moving edge dislocations leads to the dry friction effect. Numerical evaluations have shown that this effect on dislocation dynamics can be rather significant at high loop concentrations.  相似文献   

19.
A model describing mechanical behaviour of nanocrystalline materials (NC) obtained by crystallization from amorphous precursor is presented. In the framework of this model a structure of such NCs is represented as a composite consisting of amorphous matrix and absolutely rigid inclusions corresponding to crystalline phase. Dependencies of stress concentration coefficient and yield stress of NCs on the average grain size are obtained. It is shown that the dependence of the yield stress has a point of inflection at the critical grain size in the range of 20–25 nm and is inverse to the Hall-Petch relationship at grain sizes smaller than the critical one. The model predicts a formation of a superlattice from disclinations located in triple junctions of grains on the stage of NC plastic flow. A process of the plastic flow of NC's amorphous matrix and amorphous metallic alloys is described as a go-ahead mechanism of dislocation movement, which includes emission, absorption and reemission of dislocations by disclinations.  相似文献   

20.
通过分子动力学模拟研究了在相同冲击加载强度下单晶铝中氦泡和孔洞的塑性变形特征,结果发现氦泡和孔洞的塌缩是由发射剪切型位错环引起的,而没有观测到棱锥型位错环发射. 氦泡和孔洞周围的位错优先成核位置基本一致,但是氦泡周围发射的位错环数目比孔洞多,位错环发射速度明显比孔洞快. 且氦泡和孔洞被冲击波先扫过部分比后扫过部分发射位错困难. 通过滑移面上的分解应力分析发现,氦泡和孔洞周围塑性特征的差别是由于氦泡内压引起最大分解应力分布改变造成的. 氦泡和孔洞被冲击波先后扫过部分塑性不对称是因为冲击波扫过时引起形状变化, 关键词: 分子动力学 冲击波 氦泡 孔洞  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号