首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the displacement processes were observed as gaseous or supercritical CO2 was injected into n-decane-saturated glass beads packs using a 400-MHz magnetic resonance imaging (MRI) system. Two-dimensional images of oil distribution in the vertical median section were obtained using a spin-echo pulse sequence. Gas channeling and viscous fingering appeared obviously in immiscible gaseous CO2 displacement. A piston-like displacement front was detected in miscible supercritical CO2 displacement that provided high sweep efficiency. MRI images were processed with image intensity analysis methods to obtain the saturation profiles. Final oil residual saturations and displacement coefficients were also estimated using this imaging intensity analysis. It was proved that miscible displacement can enhance the efficiency of CO2 displacement notably. Finally, a special coreflood analysis method was applied to estimate the effects of capillary, viscosity and buoyancy based on the obtained saturation data.  相似文献   

2.
A clear understanding of two-phase fluid flow properties in porous media is of importance to CO2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8 mL min 1. For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO2 and water became miscible in the beginning of CO2 injection. CO2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO2 and water to invade into small pore spaces more easily. The study also showed CO2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO2 slightly decreases with the increase of capillary number.  相似文献   

3.
The objective of this study was to understand fluid flow in porous media. Understanding of fluid flow process in porous media is important for the geological storage of CO2. The high-resolution magnetic resonance imaging (MRI) technique was used to measure fluid flow in a porous medium (glass beads BZ-02). First, the permeability was obtained from velocity images. Next, CO2–water immiscible displacement experiments using different flow rates were investigated. Three stages were obtained from the MR intensity plot. With increasing CO2 flow rate, a relatively uniform CO2 distribution and a uniform CO2 front were observed. Subsequently, the final water saturation decreased. Using core analysis methods, the CO2 velocities were obtained during the CO2–water immiscible displacement process, which were applied to evaluate the capillary dispersion rate, viscous dominated fractional flow, and gravity flow function. The capillary dispersion rate dominated the effects of capillary, which was largest at water saturations of 0.5 and 0.6. The viscous-dominant fractional flow function varied with the saturation of water. The gravity fractional flow reached peak values at the saturation of 0.6. The gravity forces played a positive role in the downward displacements because they thus tended to stabilize the displacement process, thereby producing increased breakthrough times and correspondingly high recoveries. Finally, the relative permeability was also reconstructed. The study provides useful data regarding the transport processes in the geological storage of CO2.  相似文献   

4.
Magnetic resonance imaging is used to follow the removal process of a visco-elastic surfactant (VES) fracturing fluid in Bentheimer sandstone cores at typical reservoir temperatures (T=333 K). Two displacing fluids were investigated, a Gadolinium doped water phase (1M NaCl solution), and a Gadolinium doped hydrocarbon phase (Mineral Spirits). In addition to flow characteristics obtained by conventional core-flooding, i.e., the macroscopically averaged volumetric flow rates and differential pressures, we have also measured the saturation profiles and characteristic displacement patterns during all stages of the removal process. To acquire these data we have used quantitative one-dimensional chemically specific profiling along with fast two-dimensional imaging experiments while flooding Bentheimer sandstone cores in situ in the spectrometer. Our results show that both displacement processes (complex fluid displaced by water or hydrocarbon phase) are dominated by the large viscosity contrasts present. However, distinct differences were found between the displacement characteristics of water and hydrocarbon, which confirmed the sensitivity of the complex fracturing fluid to the displacing fluid.  相似文献   

5.
A mathematical model of the two-phase three-component filtration of the oil–water–supercritical fluid system in a porous medium is developed. The results of numerical simulations of the three-component two-phase filtration during oil displacement by supercritical CO2 from a watered stratum are reported. In the region of oil displacement from watered stratum, there is a significant discrepancy between the experimental and simulation results because of the transient mode of filtration associated with the concurrent saturation of the oil and water with supercritical CO2 under high pressure. In the region of two-phase filtration of the oil–water system and in the region of pumping of three or more pore volumes of supercritical CO2, the deviation of the simulation results from the experimental data does not exceed 10%.  相似文献   

6.
In analysis of transverse relaxation time (T 2) curves in a Carr-Purcell-Meiboom-Gill (CPMG) experiment in a multicomponent system originating from measurements of oil and water in rock cores, where internal magnetic field gradients broaden the line widths significantly, there is very little direct information to be extracted of the different components contributing to the totalT 2 relaxation time curve. From the study of rock cores saturated with different amounts of crude oil and water, we show that with an optimised experimental setup it is possible to extract information from the nuclear magnetic resonance response that is not resolved by any other methods. This setup combines pulsed field gradient methods with the CPMG experiment utilizing data from both rock cores and bulk oil and water. Then it becomes feasible to separate the signals from oil and water where the two-dimensional inverse Laplace transform ordinarily seems to fail.  相似文献   

7.
Polymer flooding is an efficient technique to enhance oil recovery over water flooding. There are lots of discussions regarding the mechanisms for polymer flooding enhancing oil recovery. The main focus is whether polymer flooding can increase sweep efficiency alone, or can increase both of sweep efficiency and displacement efficiency. We present a study on this problem. Oil displacement experiments on 4 natural cores show that polymer flooding can increase oil recovery efficiency by more than 12% over water. Moreover, photos are taken by the nuclear magnetic resonance (NMR) method both after water flooding and after polymer flooding, which show remaining oil saturation distribution at the middle cross section and the central longitudinal section. Analyses of these photos demonstrate that polymer flooding can increase both sweep efficiency and displacement efficiency.  相似文献   

8.
A magnetic resonance imaging (MRI) method is presented to measure localized porosity values inside natural porous rocks for the purpose of obtaining frequency distributions of the porosity (porosity distributions). The method is applied to study six different cores, including three Berea sandstone samples, Casper sandstone, Indiana limestone, and San Andres dolomite. An image of the porosity is shown for a transverse and a longitudinal slice in order to show qualitative variations of the porosity within each core sample. The porosity distribution for the entire core has been acquired, and it is shown with a Gaussian fit to the data. In addition, for cores known to have a layered structure, a bimodal distribution is fit to the data, and the fit is used to estimate the value of the porosity for two characteristic types of layers within the core sample.  相似文献   

9.
Pulsed magnetic field gradient stimulated echo NMR is used to investigate the simultaneous flow of two phases (an aqueous phase and an hydrocarbon phase) within a strongly water-wet sample of Fontainebleau sandstone. The Fontainebleau sandstone is prepared in increasing steady-state water saturations by a secondary imbibition process. The increase in the water saturation causes an increasing fraction of the oil phase (non-wetting phase) to become trapped within the sample. The stimulated echo dependence on the gradient pulse area, q, is used to derive the displacement probability, PX, for a fixed observation time. These displacement probabilities clearly show the progressive trapping of the hydrocarbon phase with increasing steady-state water saturations. Quantitative measurements of the fraction of the oil phase trapped were made from the echo attenuation function Edelta(q), both as a function of water saturation and observation time.  相似文献   

10.
The dynamics of magnetoelectric RMn2O5 crystals (R=Eu and Gd) was studied in the frequency and temperature ranges 20–300 GHz and 5–50 K, respectively. The crystals possessed magnetic and ferroelectric long-range order and had close transition temperatures, TN, C?36 and 30 K for R=Eu and Gd, respectively. Mixed magneto-lattice excitations were observed in GdMn2O5; the excitations were most intense near the transition temperature T?30 K at frequencies close to the antiferromagnetic resonance frequencies of the Mn subsystem. Along with the antiferromagnetic resonance of the Mn subsystem, the ferromagnetic resonance of the Gd subsystem was observed in GdMn2O5 in an external magnetic field. No such dynamics was characteristic of EuMn2O5.  相似文献   

11.
闫树科  包瑾  苏喜平  徐晓光  姜勇 《物理学报》2008,57(4):2504-2508
采用直流磁控溅射方法制备了一系列的合成反铁磁及以其为自由层的自旋阀.研究发现,在Ni81Fe19与Ru层之间插入适当厚度的Co90Fe10层后,可有效地提高合成反铁磁两磁性层间的反铁磁耦合强度,得到具有饱和场Hs更高、饱和磁化强度Ms更低、热稳定性更好的合成反铁磁.另外,以这种合成反铁磁作自旋阀的自由层时,可有效提高自旋阀的稳定性. 关键词: 合成反铁磁 退火 自旋阀  相似文献   

12.
Well-dispersed nanoparticles with iron/iron carbide core and iron oxide shell structures may constitute an excellent magnetic material for different applications as magnetic nanofluids, contrast agents in magnetic resonance imaging, sensors and catalysts. Based on the ability of the CO2 laser pyrolysis technique to synthesize nanoparticles of the Fe/Fe2O3 core-shell type, we further improve the powder dispersion by first collecting the nanoparticles in a toluene bubbler, positioned downstream and prior to the collection filter. Structural characterisation of the samples by electron microscopy and X-ray diffraction was performed. Conditions in which clusters contain a reduced number of nanoparticles (around 50) are evidenced. Mean core-shell particle sizes of 15 nm were estimated. Finally, preliminary results on the morphology of iron/iron oxide core-shell nanoparticles as hydrocarbon-based magnetic nanofluids are presented.  相似文献   

13.
We present a grid of absolute reference frequencies based on CO2 (or N2O) lasers locked to saturation peaks of heavy molecules. Frequency differences between OsO4 peaks corresponding to adjacent CO2 laser lines from P(12) to P(22) have been measured with 1 kHz accuracy. This set includes one 192OsO4 resonance whose absolute frequency is known with the same accuracy. This absolute grid is then used to provide an absolute calibration of the ν3 band saturation spectrum of SF6. We also find a 23 kHz average frequency difference between the CO2 grid and the new OsO4 grid which we interpret tentatively as a small extrapolation error from the R to the P branch frequencies of CO2.  相似文献   

14.
Magnetic MFe2O4 (M=Co, Ni, Zn) nanocrystals with a diameter about 30 nm and a nearly spherical shape were synthesized via a simple hydrothermal approach. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy have been used to investigate the as-prepared magnetic MFe2O4 (M=Co, Ni, Zn) nanocrystals. Magnetic properties of the as-prepared samples have been detected by a vibrating sample magnetometer at room temperature and the results show that the as-prepared magnetic MFe2O4 nanocrystals are a type characteristic of superparamagnetic materials. These superparamagnetic nanocrystals are believed to be promising for wide engineering applications, such as drug delivery, bioseparation, and magnetic resonance imaging.  相似文献   

15.
Two- and three-dimensional quantitative, saturation-recovery, NMR imaging has been applied to two sandstone reservoir cores. M0 and T1 images of high quality have been obtained with reasonable data-acquisition and data-processing times. The T1 and T2 processes have been shown to be correlated; the variations of the parameters within the images and the differences between the bulk and image relaxation values are discussed. The results of a quantitative T1 imaging experiment of a phantom are also presented in order to demonstrate the advantages of quantitative NMR imaging over standard bulk measurements.  相似文献   

16.
Four Ib-type synthetic diamond crystals were studied by dynamic nuclear polarization (DNP)-enhanced high resolution solid state13C nuclear magnetic resonance (NMR) spectroscopy. The home built DNP magic-angle-spinning (MAS) NMR spectrometer operates at a field strength of 1.9 T and the highest DNP enhancement factor of synthetic diamonds came near to 103. Comparing with Ib-type natural diamonds, the13C NMR linewidths of synthetic diamonds in static spectra are broader. The13C spin-lattice relaxation time and DNP polarization time of synthetic diamond are shorter than those of Ib-type natural diamond. From the hyperfine structure of the DNP enhancement curve, four kinds of nitrogen-centred free radicals could be identified in synthetic diamond.  相似文献   

17.
After obtaining experimental data of CO2 hydrate formation and dissociation in a porous medium using magnetic resonance imaging (MRI), the purpose of this study was to analyze the different dissociation rate of CO2 hydrate using two heating rates. Images were obtained by using a fast spin-echo sequence, and the field of view was set to 40×40×40 mm. The vessel pressure was monitored during hydrate formation and dissociation, which was used to compare with MRI mean intensity. The result indicated that the MRI could visualize hydrate formation and dissociation, and the MRI mean intensity of water was in good agreement with the vessel pressure changes. The hydrate formation and dissociation rates were also quantified using the MRI mean intensity of water. The experimental results showed that the higher heating rate caused the rapid hydrate dissociation.  相似文献   

18.
Resting fluctuations in arterial CO2 (a cerebral vasodilator) are believed to be an important source of low-frequency blood oxygenation level dependent (BOLD) signal fluctuations. In this study we focus on the two commonly used resting-states in functional magnetic resonance imaging experiments, eyes open and eyes closed, and quantify the degree to which measured spontaneous fluctuations in the partial pressure of end-tidal CO2 (Petco2) relate to BOLD signal time series. A significantly longer latency of BOLD signal changes following Petco2 fluctuations was found in the eyes closed condition compared to with eyes open, which may reveal different intrinsic vascular response delays in CO2 reactivity or an alteration in the net BOLD signal arising from Petco2 fluctuations and altered neural activity with eyes closed. By allowing a spatially varying time delay for the compensation of this temporal difference, a more spatially consistent CO2 correlation map can be obtained. Finally, Granger-causality analysis demonstrated a “causal” relationship between Petco2 and BOLD. The identified dominant Petco2→BOLD directional coupling supports the notion that Petco2 fluctuations are indeed a cause of resting BOLD variance in the majority of subjects.  相似文献   

19.
Relaxation parameter estimation and brain activation detection are two main areas of study in magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI). Relaxation parameters can be used to distinguish voxels containing different types of tissue whereas activation determines voxels that are associated with neuronal activity. In fMRI, the standard practice has been to discard the first scans to avoid magnetic saturation effects. However, these first images have important information on the MR relaxivities for the type of tissue contained in voxels, which could provide pathological tissue discrimination. It is also well-known that the voxels located in gray matter (GM) contain neurons that are to be active while the subject is performing a task. As such, GM MR relaxivities can be incorporated into a statistical model in order to better detect brain activation. Moreover, although the MR magnetization physically depends on tissue and imaging parameters in a nonlinear fashion, a linear model is what is conventionally used in fMRI activation studies. In this study, we develop a statistical fMRI model for Differential T2? ConTrast Incorporating T1 and T2? of GM, so-called DeTeCT-ING Model, that considers the physical magnetization equation to model MR magnetization; uses complex-valued time courses to estimate T1 and T2? for each voxel; then incorporates gray matter MR relaxivities into the statistical model in order to better detect brain activation, all from a single pulse sequence by utilizing the first scans.  相似文献   

20.
We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K2O-22.5Al2O3-55B2O3 co-doped with low concentrations of Fe2O3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe2O4 after annealing the glasses at 560 °C.By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles.The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号