首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

7.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

8.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

9.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
The electrosynthesis of copper and silver core-shell nanoparticles (NPs) by the sacrificial anode technique, employing tetraoctylammonium (TOA) salts as base electrolyte for the first time, is described. These surfactants were selected because they combine high NP stabilizing power with useful disinfecting properties. The resulting colloids were mixed with a solution of an inert dispersing polymer and used to prepare nanostructured composite thin films. The morphologies and chemical compositions of the nanomaterials were characterized by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The TEM reveals that the average core diameter of the metal NPs ranges between 1.7 and 6.3 nm, as a function of the nature of the metal and of the electrosynthesis conditions, and does not change significantly upon inclusion in the polymer matrix. An appreciable concentration of the metal is detected on the nanoparticle surface by XPS. High-resolution XP spectra indicate that both copper and silver are present at zero oxidation state in all of the materials (colloids and composite films). This demonstrates the high efficiency of the surfactant at controlling the morphology and the chemical composition of the nanodispersed metal in both the as-synthesized colloid and in the polymeric dispersion. The nanocoatings are shown to exert a marked inhibitory effect on the growth of eukaryote and prokaryote target microrganisms, and experimental evidence of a synergic disinfecting effect due to the surfactant and the nanodispersed metal is provided. On the basis of these stability and bioactivity results, it is clear that Cu-NPs and Ag-NPs are suitable for application in disinfecting or antifouling paint and coating formulations.Electronic Supplementary Material Supplementary material is available for this article at Dedicated to the memory of Wilhelm Fresenius  相似文献   

12.
研究了恒电位下两个铜线电极在磷酸溶液中的电流混沌振荡行为,通过恒定不同的电位数值,改变单个电极的电流振荡混沌行为,研究了不同混沌间的相互作用.调整线电极间的距离,研究了电极间距对电流振荡行为的影响.实验中两电极的振荡间呈现了复杂的耦合作用,耦合后的频率与耦合前电极原有的频率不同.两电极的混沌电流振荡中呈现出同步、准周期同步和反相同步等现象.电极距离一定时,振荡波形差别很大的两电极的电流容易呈现反相同步和准周期同步,波形差别不大时容易产生同步.强的耦合导致电极间电流振荡的同步,电极距离的加大,电极间电流振荡难以产生同步.对耦合作用机制也进行了探讨.  相似文献   

13.
Phase and structural relationships of the sulfur, selenium, and tellurium compounds of the 4d and 5d transition elements of groups IV to VII of the periodic system are discussed. Homologous elements behave very similarly with respect to the chalcogens, and this is particularly the case for niobium and tantalum, and for molybdenum and tungsten. However, zirconium, niobium, and molybdenum have a greater tendency towards formation of chalcogen-poor phases than their homologues hafnium, tantalum, and tungsten. Subchalcogenides are known only for zirconium and niobium. The number of phases and the tendency towards formation of solid solutions are considerably smaller among the tellurides than among the sulfides and selenides. The crystal structures of the telluride phases also differ from those of the sulfide and selenide phases of analogous composition. In addition, a review of the phase and structural relationships of the arsenic and antimony compounds of the 4d and 5d transition elements of groups V to VII is given.  相似文献   

14.
为从分子水平认识多糖分子与小分子之间相互作用的机理,应用光谱法研究了壳聚糖(CTS)与锌试剂(ZCN)的相互作用机理;测得ZCN-CTS复合物吸收光谱出现新的吸收峰所需的临界ZCN/CTS摩尔比为2.67×103, CTS对ZCN的最大结合数为6.93×103,实验值与理论值相吻合,证明了多糖与生物探针相互作用理论模型的可靠性;探讨了ZCN与CTS相互作用产生变色反应的机理,认为其是在ZCN与CTS大分子间发生静电相互作用的基础上,主要由ZCN与CTS大分子间的疏水相互作用所引起.  相似文献   

15.
Bo  Xu  Yi-hu  Song  Yong-gang  Shang  Guan  郑强 《高分子科学》2006,(3):299-306
Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the structure of the clay phase and the morphology of the nanocomposites. Influences of the comonomer in the copolymer and the content of the copolymer on the morphology of the resulting nanocomposites were discussed. The binary and the trinary composites may form intercalated or exfoliated structures depending on the interaction between the copolymer and the clay layers and the content of the copolymer.  相似文献   

16.
用正丁胺作为碳源,采用射频辉光放电制备碳膜,选用激光染料R6G和聚乙二醇混合液作为蒸气源,采用单源热蒸发,在蒸发室与染料同时沉积得到混合膜,用拉曼光谱和红外光谱分析了碳膜的结构和键合方式,分析表明:碳膜中存在胺基团和氢原子.混合膜的荧光谱测量结果表明,认为正丁胺对染料荧光谱的影响是因为胺基和氢原子的存在.  相似文献   

17.
The correlations between isotope ratios in water, organic mass, and trace elements of food and beverages, and the circumstances and sites of their origin and production are outlined, and the methods of mass spectrometric isotope ratio determination and the positional 2H analysis by quantitative NMR measurement are explained. In context with the application of these methods for origin and authenticity investigations of food, examples are given for the proof of watering or sugar addition to wine and fruit juices and methods for the identification of nondeclared additions of L‐malic and Lascorbic acids are described. The possibilities of multielement isotope ratio analysis for the identification of origin of animal products (eggs, milk products, meat) and methods for the discriminations between natural and nature identical aroma compounds are outlined. Finally, the possibilities of isotope ratio measurements for the discrimination between plant and animal food from conventional and organic production are discussed.  相似文献   

18.
在合成气(CO+H2)与复合溶剂(水+有机溶剂)液化系统下研究了气氛、温度、催化剂类型对宝日希勒褐煤转化率、油气水产率和CO转化率等液化特征的影响,从而探讨其液化性能。结果表明,在高含水复合溶剂系统中,合成气气氛、反应温度430-450℃适宜宝日希勒褐煤液化转化,转化率可达到81.15%,油气水产率达到71.53%。该液化系统下,含铁、碱和硫复合型催化剂能有效地提高液化转化率和油气水产率,在430℃催化液化下褐煤转化率达92.27%,油气水产率达79.39%。该催化剂有效促进了煤中大分子的裂解和系统中水煤气变换反应进程,沥青质减少,油含量增多。液化油中多环芳烃衍生物在催化液化过程中向单环芳烃衍生物和烷烯烃转化,分子量降低,提高了油品质量。  相似文献   

19.
Experimental data are presented for the solubility in water of benzoic and toluic acids from 5° to 65°C. From the solubility the molality of the monomeric form of the acid is calculated using literature data for both ionization and dimerization of the acid. These data for the monomer combined with data from the literature for vaporization of the solid and ionization in both the gas phase and the aqueous phase yield entropy and enthalpy changes for the solvation of molecular and anionic forms of the acid. A similar procedure is also applied to literature data for the solubility of benzene in water. It is shown that the hydration entropies of the monomeric forms are a linear function of their partial molar volumes. It is concluded that hydration of the undissociated o-toluic acid may be crucial to the increased acidity of that acid compared to benzoic acid.  相似文献   

20.
《Comptes Rendus Chimie》2018,21(12):1230-1269
This contribution reports on the state of the art of the elaboration and the application of nanoparticles (NPs) and nanohybrid/nanocomposite materials based on spin-crossover (SCO) complexes. The first part of this review concerns the syntheses and the characterizations of the physical properties of SCO NPs. All of the methods including homogeneous and heterogeneous media syntheses developed for the elaboration of such NPs and the associated methods used for their morphological characterization are presented. A particular attention is paid on the effects of the size reduction and the influence of the environment on the SCO properties and to specific and recent remarkable advanced physical measurements realized on a batch of NPs or on an isolated object. The second part presents the elaboration of various nanocomposite or nanohybrid materials for which SCO NPs have been associated with magnetic entities, noble metals, different fluorescent dyes, and different active polymers with the objectives to go toward specific applications based on synergistic effects between the two components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号