首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
Let \({\Omega}\) be a Lipschitz bounded domain of \({\mathbb{R}^N}\), \({N\geq2}\), and let \({u_p\in W_0^{1,p}(\Omega)}\) denote the p-torsion function of \({\Omega}\), p > 1. It is observed that the value 1 for the Cheeger constant \({h(\Omega)}\) is threshold with respect to the asymptotic behavior of up, as \({p\rightarrow 1^+}\), in the following sense: when \({h(\Omega) > 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_{p}\right\| _{L^\infty(\Omega)}=0}\), and when \({h(\Omega) < 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega)}=\infty}\). In the case \({h(\Omega)=1}\), it is proved that \({\limsup_{p\rightarrow1^+}\left\|u_p\right\|_{L^\infty(\Omega)}<\infty}\). For a radial annulus \({\Omega_{a,b}}\), with inner radius a and outer radius b, it is proved that \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega_{a,b})}=0}\) when \({h(\Omega_{a,b})=1}\).  相似文献   

2.
Let \({p \in (1,\infty)}\), \({s \in (0,1)}\) and \({\Omega \subset {\mathbb{R}^{N}}}\) a bounded open set with boundary \({\partial\Omega}\) of class C 1,1. In the first part of the article we prove an integration by parts formula for the fractional p-Laplace operator \({(-\Delta)_{p}^{s}}\) defined on \({\Omega \subset {\mathbb{R}^{N}}}\) and acting on functions that do not necessarily vanish at the boundary \({\partial\Omega}\). In the second part of the article we use the above mentioned integration by parts formula to clarify the fractional Neumann and Robin boundary conditions associated with the fractional p-Laplacian on open sets.  相似文献   

3.
We use the variational concept of \({\Gamma}\)-convergence to prove existence, stability and exhibit the geometric structure of four families of stationary solutions to the singularly perturbed parabolic equation \({u_t=\epsilon^2 {\rm div}(k\nabla u)+f(u,x)}\), for \({(t,x)\in \mathbb{R}^+\times\Omega}\), where \({\Omega\subset\mathbb{R}^n}\), \({n\geq 1}\), supplied with no-flux boundary condition. The novelty here lies in the fact that the roots of the bistable function f are not isolated, meaning that the graphs of its roots are allowed to have contact or intersect each other along a Lipschitz-continuous (n ? 1)-dimensional hypersurface \({\gamma \subset \Omega}\); across this hypersurface, the stable equilibria may have corners. The case of intersecting roots stems from the phenomenon known as exchange of stability which is characterized by \({f(\cdot,x)}\) having only two roots.  相似文献   

4.
Given numbers \({n,s \in \mathbb{N}}\), \({n \geq 2}\), and the \({n}\)th-degree monic Chebyshev polynomial of the first kind \({\widehat T_n(x)}\), the polynomial system “induced” by \({\widehat T_n(x)}\) is the system of orthogonal polynomials \({\{p_{k}^{n,s} \}}\) corresponding to the modified measure \({d \sigma^{n,s}(x)=\widehat T^{2s}_n(x) d\sigma(x)}\), where \({d\sigma(x)=1/\sqrt{1-x^{2}}dx}\) is the Chebyshev measure of the first kind. Here we are concerned with the problem of determining the coefficients in the three-term recurrence relation for the polynomials \({p^{n,s}_{k}}\). The desired coefficients are obtained analytically in a closed form.  相似文献   

5.
Let \({\Omega}\) a bounded domain in \({\mathbb{R} ^N }\), and let \({u\in C^1 (\overline{\Omega})}\) a weak solution of the following overdetermined BVP: \({-\nabla (g(|\nabla u|)|\nabla u|^{-1}\nabla u)=f(|x|,u)}\), \({ u > 0 }\) in \({\Omega }\) and \({u=0, \ |\nabla u(x)|=\lambda (|x|)}\) on \({\partial \Omega }\), where \({g\in C([0,+\infty)\cap C^1 ((0,+\infty ) ) }\) with \({g(0)=0}\), \({g'(t) > 0}\) for \({t > 0}\), \({f\in C([0,+\infty ) \times [0, +\infty ) )}\), f is nonincreasing in \({|x|}\), \({\lambda \in C([0, +\infty )) }\) and \({\lambda }\) is positive and nondecreasing. We show that \({\Omega }\) is a ball and u satisfies some “local” kind of symmetry. The proof is based on the method of continuous Steiner symmetrization.  相似文献   

6.
For each \({\alpha\in[0,2)}\) we consider the eigenvalue problem \({-{\rm div}(|x|^\alpha \nabla u)=\lambda u}\) in a bounded domain \({\Omega\subset \mathbb{R}^N}\) (\({N\geq 2}\)) with smooth boundary and \({0\in \Omega}\) subject to the homogeneous Dirichlet boundary condition. Denote by \({\lambda_1(\alpha)}\) the first eigenvalue of this problem. Using \({\Gamma}\)-convergence arguments we prove the continuity of the function \({\lambda_1}\) with respect to \({\alpha}\) on the interval \({[0,2)}\).  相似文献   

7.
Let \({\mathcal{B}^\omega(p, q, B_d)}\) denote the \({\omega}\)-weighted Hardy–Bloch space on the unit ball B d of \({\mathbb{C}^d}\), \({d\ge 1}\). For \({2< p,q < \infty}\) and \({f\in \mathcal{B}^\omega(p, q, B_d)}\), we obtain sharp estimates on the growth of the p-integral means M p (f, r) as \({r\to 1-}\).  相似文献   

8.
We call the \({\delta}\)-vector of an integral convex polytope of dimension d flat if the \({\delta}\)-vector is of the form \({(1,0,\ldots,0,a,\ldots,a,0,\ldots,0)}\), where \({a \geq 1}\). In this paper, we give the complete characterization of possible flat \({\delta}\)-vectors. Moreover, for an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^N}\) of dimension d, we let \({i(\mathcal{P},n)=|n\mathcal{P}\cap \mathbb{Z}^N|}\) and \({i^*(\mathcal{P},n)=|n(\mathcal{P} {\setminus}\partial \mathcal{P})\cap \mathbb{Z}^N|}\). By this characterization, we show that for any \({d \geq 1}\) and for any \({k,\ell \geq 0}\) with \({k+\ell \leq d-1}\), there exist integral convex polytopes \({\mathcal{P}}\) and \({\mathcal{Q}}\) of dimension d such that (i) For \({t=1,\ldots,k}\), we have \({i(\mathcal{P},t)=i(\mathcal{Q},t),}\) (ii) For \({t=1,\ldots,\ell}\), we have \({i^*(\mathcal{P},t)=i^*(\mathcal{Q},t)}\), and (iii) \({i(\mathcal{P},k+1) \neq i(\mathcal{Q},k+1)}\) and \({i^*(\mathcal{P},\ell+1)\neq i^*(\mathcal{Q},\ell+1)}\).  相似文献   

9.
In this paper, we study the asymptotic behavior of viscosity solutions to boundary blow-up elliptic problem \({\Delta_{\infty}u=b(x)f(u),\, x\in\Omega,\,u|_{\partial\Omega}=+\infty,}\) where \({\Omega}\) is a bounded domain with C2-boundary in \({\mathbb{R}^{N}}\), \({b\in \rm C(\bar{\Omega})}\) is positive in \({\Omega}\), which may be vanishing on the boundary, \({f\in C^{1}([0, \infty))}\) is regularly varying or is rapidly varying at infinity.  相似文献   

10.
We prove a Beurling-Blecher-Labuschagne theorem for \({H^\infty}\)-invariant spaces of \({L^p(\mathcal{M},\tau)}\) when \({0 < p \leq\infty}\), using Arveson’s non-commutative Hardy space \({H^\infty}\) in relation to a von Neumann algebra \({\mathcal{M}}\) with a semifinite, faithful, normal tracial weight \({\tau}\). Using the main result, we are able to completely characterize all \({H^\infty}\)-invariant subspaces of \({L^p(\mathcal{M} \rtimes_\alpha \mathbb{Z},\tau)}\), where \({\mathcal{M} \rtimes_\alpha \mathbb{Z} }\) is a crossed product of a semifinite von Neumann algebra \({\mathcal{M}}\) by the integer group \({\mathbb{Z}}\), and \({H^\infty}\) is a non-selfadjoint crossed product of \({\mathcal{M}}\) by \({\mathbb{Z}^+}\). As an example, we characterize all \({H^\infty}\)-invariant subspaces of the Schatten p-class \({S^p(\mathcal{H})}\), where \({H^\infty}\) is the lower triangular subalgebra of \({B(\mathcal{H})}\), for each \({0 < p \leq\infty}\).  相似文献   

11.
We consider a family \({\{T_{r}: [0, 1] \circlearrowleft \}_{r\in[0, 1]}}\) of Markov interval maps interpolating between the tent map \({T_{0}}\) and the Farey map \({T_{1}}\). Letting \({\mathcal{P}_{r}}\) denote the Perron–Frobenius operator of \({T_{r}}\), we show, for \({\beta \in [0, 1]}\) and \({\alpha \in (0, 1)}\), that the asymptotic behaviour of the iterates of \({\mathcal{P}_{r}}\) applied to observables with a singularity at \({\beta}\) of order \({\alpha}\) is dependent on the structure of the \({\omega}\)-limit set of \({\beta}\) with respect to \({T_{r}}\). The results presented here are some of the first to deal with convergence to equilibrium of observables with singularities.  相似文献   

12.
We show that for every \({k\ge 2}\) and \({n\ge k}\), there is an \({n}\)-dimensional unit cube in \({\mathbb{R}^n}\) which is mapped to a regular \({2k}\)-gon by an orthogonal projection in \({\mathbb{R}^n}\) onto a \({2}\)-dimensional subspace. Moreover, by increasing dimension \({n}\), arbitrary large regular \({2k}\)-gon can be obtained in such a way. On the other hand, for every \({m\ge 3}\) and \({n\ge m-1}\), there is an \({n}\)-dimensional regular simplex of unit edge in \({\mathbb{R}^n}\) which is mapped to a regular \({m}\)-gon by an orthogonal projection onto a plane. Moreover, contrary to the cube case, arbitrary small regular \({m}\)-gon can be obtained in such a way, by increasing dimension \({n}\).  相似文献   

13.
We investigate Weyl type asymptotics of functional-difference operators associated to mirror curves of special del Pezzo Calabi-Yau threefolds. These operators are \({H(\zeta) = U + U^{-1} + V + \zeta V^{-1}}\) and \({H_{m,n} = U + V + q^{-mn}U^{-m}V^{-n}}\), where \({U}\) and \({V}\) are self-adjoint Weyl operators satisfying \({UV = q^{2}VU}\) with \({q = {\rm e}^{{\rm i}\pi b^{2}}}\), \({b > 0}\) and \({\zeta > 0}\), \({m, n \in \mathbb{N}}\). We prove that \({H(\zeta)}\) and \({H_{m,n}}\) are self-adjoint operators with purely discrete spectrum on \({L^{2}(\mathbb{R})}\). Using the coherent state transform we find the asymptotical behaviour for the Riesz mean \({\sum_{j\ge 1}(\lambda - \lambda_{j})_{+}}\) as \({\lambda \to \infty}\) and prove the Weyl law for the eigenvalue counting function \({N(\lambda)}\) for these operators, which imply that their inverses are of trace class.  相似文献   

14.
In the unit cone\({\mathcal{C} := \{(x, y, z)} \in {\mathbb R}^{3} : {x}^{2} + {y}^{2} < {z}^{2}, {z} > {0}\}\) we establish a geometric maximum principle for H-surfaces, where its mean curvature \({H = H(x, y, z)}\) is optimally bounded. Consequently, these surfaces cannot touch the conical boundary \({\partial \mathcal{C}}\) at interior points and have to approach \({\partial \mathcal{C}}\) transversally. By a nonlinear continuity method, we then solve the Dirichlet problem of the H-surface equation in central projection for Jordan-domains \({\Omega}\) which are strictly convex in the following sense: On its whole boundary \({\partial \mathcal{C}(\Omega)}\) their associate cone \({\mathcal{C}(\Omega) := \{(rx, ry, r) \in {\mathbb R}^{3} : (x, y) \in \Omega, r \in (0,+\infty)}\}\) admits rotated unit cones \({O \circ \mathcal{C}}\) as solids of support, where \({O \in {\mathbb R}^{3\times3}}\) represents a rotation in the Euclidean space. Thus we construct the unique H-surface with one-to-one central projection onto these domains \({\Omega}\) bounding a given Jordan-contour \({\Gamma \subset \mathcal{C} \backslash \{0\}}\) with one-toone central projection.  相似文献   

15.
A sequence A of nonnegative integers is called complete if all sufficiently large integers can be represented as the sum of distinct terms taken form A. For a sequence \({S=\{s_{1}, s_{2}, \dots\}}\) of positive integers and a positive real number α, let S α denote the sequence \({\{\lfloor\alpha s_{1}\rfloor, \lfloor\alpha s_{2}\rfloor, \dots\}}\), where \({\lfloor x \rfloor}\) denotes the greatest integer not greater than x. Let \({{U_S = \{\alpha \mid S_\alpha} \, is complete\}}\). Hegyvári [6] proved that if \({\lim_{n\to\infty} (s_{n+1}-s_{n})=+ \infty}\), \({s_{n+1} < \gamma s_{n}}\) for all integers \({n \geqq n_{0}}\), where \({1 < \gamma < 2}\), and \({U_{S}\ne\emptyset}\), then \({\mu(U_{S}) > 0}\), where \({\mu(U_{S})}\) is the Lebesgue measure of U S . Yong-Gao Chen and the first author [4] proved that, if \({s_{n+1} < \gamma s_{n}}\) for all integers \({n \geqq n_{0}}\), where \({1 < \gamma \leqq 7/4=1.75}\), then \({\mu(U_{S}) > 0}\). In this paper, we prove that the conclusion holds for \({1 < \gamma \leqq \sqrt[4]{13}=1.898\dots\;}\).  相似文献   

16.
Commutative \({\ell}\)-groups G (in which for all \({x, y \in G, xy = yx}\)) were studied long ago. This was then generalized to the study of \({\ell}\)-groups G in which for a given integer n and for all \({x, y \in G, x^{n}y^{n} = y^{n}x^{n}}\). It was then discovered that if for all \({x, y \in G}\), both \({x^{n}y^{n} = y^{n}x^{n}}\) and \({x^{m}y^{m} = y^{m}x^{m}}\) for two different integers m, n, then also \({x^{d}y^{d} = y^{d}x^{d}}\), where d is the greatest common divisor of m, n.  相似文献   

17.
In a general unbounded uniform C 2-domain \({\Omega \subset \mathbb{R}^n, n \geq 3}\) , and \({1\leq q\leq \infty}\) consider the spaces \({\tilde{L}^q(\Omega)}\) defined by \({\tilde{L^q}(\Omega) := \left\{\begin{array}{ll}L^q(\Omega)+L^2(\Omega),\quad q < 2, \\ L^q(\Omega)\cap L^2(\Omega),\quad q\geq 2, \end{array}\right.}\) and corresponding subspaces of solenoidal vector fields, \({\tilde{L}^q_\sigma(\Omega)}\) . By studying the complex and real interpolation spaces of these we derive embedding properties for fractional order spaces related to the Stokes problem and L p ? L q -type estimates for the corresponding semigroup.  相似文献   

18.
The purpose of this work is to classify, for given integers \({m,\, n\geq 1}\), the bordism class of a closed smooth \({m}\)-manifold \({X^m}\) with a free smooth involution \({\tau}\) with respect to the validity of the Borsuk–Ulam property that for every continuous map \({\phi : X^m \to \mathbb{R}^n}\) there exists a point \({x\in X^m}\) such that \({\phi (x)=\phi (\tau (x))}\). We will classify a given free \({\mathbb{Z}_2}\)-bordism class \({\alpha}\) according to the three possible cases that (a) all representatives \({(X^m, \tau)}\) of \({\alpha}\) satisfy the Borsuk–Ulam property; (b) there are representatives \({({X_{1}^{m}}, \tau_1)}\) and \({({X_{2}^{m}}, \tau_2)}\) of \({\alpha}\) such that \({({X_{1}^{m}}, \tau_1)}\) satisfies the Borsuk–Ulam property but \({({X_{2}^{m}}, \tau_2)}\) does not; (c) no representative \({(X^m, \tau)}\) of \({\alpha}\) satisfies the Borsuk–Ulam property.  相似文献   

19.
In this article, using the heat kernel approach from Bouche (Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp 67–81, de Gruyter, Berlin, 1996), we derive sup-norm bounds for cusp forms of integral and half-integral weight. Let \({\Gamma\subset \mathrm{PSL}_{2}(\mathbb{R})}\) be a cocompact Fuchsian subgroup of first kind. For \({k \in \frac{1}{2} \mathbb{Z}}\) (or \({k \in 2\mathbb{Z}}\)), let \({S^{k}_{\nu}(\Gamma)}\) denote the complex vector space of cusp forms of weight-k and nebentypus \({\nu^{2k}}\) (\({\nu^{k\slash 2}}\), if \({k \in 2\mathbb{Z}}\)) with respect to \({\Gamma}\), where \({\nu}\) is a unitary character. Let \({\lbrace f_{1},\ldots,f_{j_{k}} \rbrace}\) denote an orthonormal basis of \({S^{k}_{\nu}(\Gamma)}\). In this article, we show that as \({k \rightarrow \infty,}\) the sup-norm for \({\sum_{i=1}^{j_{k}}y^{k}|f_{i}(z)|^{2}}\) is bounded by O(k), where the implied constant is independent of \({\Gamma}\). Furthermore, using results from Berman (Math. Z. 248:325–344, 2004), we extend these results to the case when \({\Gamma}\) is cofinite.  相似文献   

20.
Given a sequence \({\mathcal{U} =\{U_n: n \in \omega\}}\) of non-empty open subsets of a space X, a set \({\{x_n : n \in \omega\}}\) is a selection of \({\mathcal{U}}\) if \({x_n \in U_n}\) for every \({n \in \omega}\). We show that a space X is uncountable if and only if every sequence of non-empty open subsets of C p (X) has a closed discrete selection. The same statement is not true for \({C_p(X,[0,1])}\) so we study when the above selection property (which we call discrete selectivity) holds in \({C_p(X,[0,1])}\). We prove, among other things, that \({C_p(X, [0,1])}\) is discretely selective if X is an uncountable Lindelöf \({\Sigma}\)-space. We also give a characterization, in terms of the topology of X, of discrete selectivity of \({C_p(X,[0,1])}\) if X is an \({\omega}\)-monolithic space of countable tightness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号