首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the variational concept of \({\Gamma}\)-convergence to prove existence, stability and exhibit the geometric structure of four families of stationary solutions to the singularly perturbed parabolic equation \({u_t=\epsilon^2 {\rm div}(k\nabla u)+f(u,x)}\), for \({(t,x)\in \mathbb{R}^+\times\Omega}\), where \({\Omega\subset\mathbb{R}^n}\), \({n\geq 1}\), supplied with no-flux boundary condition. The novelty here lies in the fact that the roots of the bistable function f are not isolated, meaning that the graphs of its roots are allowed to have contact or intersect each other along a Lipschitz-continuous (n ? 1)-dimensional hypersurface \({\gamma \subset \Omega}\); across this hypersurface, the stable equilibria may have corners. The case of intersecting roots stems from the phenomenon known as exchange of stability which is characterized by \({f(\cdot,x)}\) having only two roots.  相似文献   

2.
In the present paper we prove that for any open connected set \({\Omega\subset\mathbb{R}^{n+1}}\), \({n\geq 1}\), and any \({E\subset \partial \Omega}\) with \({\mathcal{H}^n(E)<\infty}\), absolute continuity of the harmonic measure \({\omega}\) with respect to the Hausdorff measure on E implies that \({\omega|_E}\) is rectifiable. This solves an open problem on harmonic measure which turns out to be an old conjecture even in the planar case \({n=1}\).  相似文献   

3.
Let \({n\in\mathbb{N}}\). For \({k\in\{1,\dots,n\}}\) let \({\Omega_k\subset \mathbb{C}}\) be a simply connected domain with a rectifiable boundary. Let \({\Omega^n=\prod_{k=1}^n\Omega_k\subset \mathbb{C}^n}\) be a generalized polydisk with distinguished boundary \({\partial\Omega^n=\prod_{k=1}^n\partial\Omega_k}\). Let E r n ) be the holomorphic Smirnov class on Ω n with index r. We show that the generalized isoperimetric inequality
$ \int\limits_{\Omega^n} |f_1|^p|f_2|^qdV\le \frac{1}{(4\pi)^n}\int\limits_{\partial \Omega^n}|f_1|^pdS \int\limits_{\partial \Omega^n} |f_2|^qdS, $
holds for arbitrary \({f_1\in E^p(\Omega^n)}\) and \({f_2\in E^q(\Omega^n)}\), where 0 < p, q < ∞. We also determine necessary and sufficient conditions for equality.
  相似文献   

4.
We call the \({\delta}\)-vector of an integral convex polytope of dimension d flat if the \({\delta}\)-vector is of the form \({(1,0,\ldots,0,a,\ldots,a,0,\ldots,0)}\), where \({a \geq 1}\). In this paper, we give the complete characterization of possible flat \({\delta}\)-vectors. Moreover, for an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^N}\) of dimension d, we let \({i(\mathcal{P},n)=|n\mathcal{P}\cap \mathbb{Z}^N|}\) and \({i^*(\mathcal{P},n)=|n(\mathcal{P} {\setminus}\partial \mathcal{P})\cap \mathbb{Z}^N|}\). By this characterization, we show that for any \({d \geq 1}\) and for any \({k,\ell \geq 0}\) with \({k+\ell \leq d-1}\), there exist integral convex polytopes \({\mathcal{P}}\) and \({\mathcal{Q}}\) of dimension d such that (i) For \({t=1,\ldots,k}\), we have \({i(\mathcal{P},t)=i(\mathcal{Q},t),}\) (ii) For \({t=1,\ldots,\ell}\), we have \({i^*(\mathcal{P},t)=i^*(\mathcal{Q},t)}\), and (iii) \({i(\mathcal{P},k+1) \neq i(\mathcal{Q},k+1)}\) and \({i^*(\mathcal{P},\ell+1)\neq i^*(\mathcal{Q},\ell+1)}\).  相似文献   

5.
We prove a Beurling-Blecher-Labuschagne theorem for \({H^\infty}\)-invariant spaces of \({L^p(\mathcal{M},\tau)}\) when \({0 < p \leq\infty}\), using Arveson’s non-commutative Hardy space \({H^\infty}\) in relation to a von Neumann algebra \({\mathcal{M}}\) with a semifinite, faithful, normal tracial weight \({\tau}\). Using the main result, we are able to completely characterize all \({H^\infty}\)-invariant subspaces of \({L^p(\mathcal{M} \rtimes_\alpha \mathbb{Z},\tau)}\), where \({\mathcal{M} \rtimes_\alpha \mathbb{Z} }\) is a crossed product of a semifinite von Neumann algebra \({\mathcal{M}}\) by the integer group \({\mathbb{Z}}\), and \({H^\infty}\) is a non-selfadjoint crossed product of \({\mathcal{M}}\) by \({\mathbb{Z}^+}\). As an example, we characterize all \({H^\infty}\)-invariant subspaces of the Schatten p-class \({S^p(\mathcal{H})}\), where \({H^\infty}\) is the lower triangular subalgebra of \({B(\mathcal{H})}\), for each \({0 < p \leq\infty}\).  相似文献   

6.
Let \({\{\varphi_n(z)\}_{n\ge0}}\) be a sequence of inner functions satisfying that \({\zeta_n(z):=\varphi_n(z)/\varphi_{n+1}(z)\in H^\infty(z)}\) for every n ≥ 0 and \({\{\varphi_n(z)\}_{n\ge0}}\) have no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace \({\mathcal{M}}\) of \({H^2(\mathbb{D}^2)}\) . We write \({\mathcal{N}= H^2(\mathbb{D}^2)\ominus\mathcal{M}}\) . If \({\{\zeta_n(z)\}_{n\ge0}}\) ia a mutually prime sequence, then we shall prove that \({rank_{\{T^\ast_z,T^\ast_w\}} \mathcal{N}=1}\) and \({rank_{\{\mathcal{F}^\ast_z\}}(\mathcal{M}\ominus w\mathcal{M})=1}\) , where \({\mathcal{F}_z}\) is the fringe operator on \({\mathcal{M}\ominus w\mathcal{M}}\) .  相似文献   

7.
In this article, using the heat kernel approach from Bouche (Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp 67–81, de Gruyter, Berlin, 1996), we derive sup-norm bounds for cusp forms of integral and half-integral weight. Let \({\Gamma\subset \mathrm{PSL}_{2}(\mathbb{R})}\) be a cocompact Fuchsian subgroup of first kind. For \({k \in \frac{1}{2} \mathbb{Z}}\) (or \({k \in 2\mathbb{Z}}\)), let \({S^{k}_{\nu}(\Gamma)}\) denote the complex vector space of cusp forms of weight-k and nebentypus \({\nu^{2k}}\) (\({\nu^{k\slash 2}}\), if \({k \in 2\mathbb{Z}}\)) with respect to \({\Gamma}\), where \({\nu}\) is a unitary character. Let \({\lbrace f_{1},\ldots,f_{j_{k}} \rbrace}\) denote an orthonormal basis of \({S^{k}_{\nu}(\Gamma)}\). In this article, we show that as \({k \rightarrow \infty,}\) the sup-norm for \({\sum_{i=1}^{j_{k}}y^{k}|f_{i}(z)|^{2}}\) is bounded by O(k), where the implied constant is independent of \({\Gamma}\). Furthermore, using results from Berman (Math. Z. 248:325–344, 2004), we extend these results to the case when \({\Gamma}\) is cofinite.  相似文献   

8.
We investigate Weyl type asymptotics of functional-difference operators associated to mirror curves of special del Pezzo Calabi-Yau threefolds. These operators are \({H(\zeta) = U + U^{-1} + V + \zeta V^{-1}}\) and \({H_{m,n} = U + V + q^{-mn}U^{-m}V^{-n}}\), where \({U}\) and \({V}\) are self-adjoint Weyl operators satisfying \({UV = q^{2}VU}\) with \({q = {\rm e}^{{\rm i}\pi b^{2}}}\), \({b > 0}\) and \({\zeta > 0}\), \({m, n \in \mathbb{N}}\). We prove that \({H(\zeta)}\) and \({H_{m,n}}\) are self-adjoint operators with purely discrete spectrum on \({L^{2}(\mathbb{R})}\). Using the coherent state transform we find the asymptotical behaviour for the Riesz mean \({\sum_{j\ge 1}(\lambda - \lambda_{j})_{+}}\) as \({\lambda \to \infty}\) and prove the Weyl law for the eigenvalue counting function \({N(\lambda)}\) for these operators, which imply that their inverses are of trace class.  相似文献   

9.
We prove the following: (1) For every \({n \geq 2}\), there are infinitely many, mutually non-similar n-dimensional simplices in \({\mathbb{R}^n}\) whose dihedral angles are all rational multiples of π. (2) For every \({n \geq 3}\), there are uncountably many, mutually non-similar n-simplices whose dihedral angles and π are linearly independent over the rational field. Moreover, in the set of all n-simplices in \({\mathbb{R}^n}\) the subset of such n-simplices is everywhere dense with respect to the Hausdorff distance.  相似文献   

10.
The purpose of this work is to classify, for given integers \({m,\, n\geq 1}\), the bordism class of a closed smooth \({m}\)-manifold \({X^m}\) with a free smooth involution \({\tau}\) with respect to the validity of the Borsuk–Ulam property that for every continuous map \({\phi : X^m \to \mathbb{R}^n}\) there exists a point \({x\in X^m}\) such that \({\phi (x)=\phi (\tau (x))}\). We will classify a given free \({\mathbb{Z}_2}\)-bordism class \({\alpha}\) according to the three possible cases that (a) all representatives \({(X^m, \tau)}\) of \({\alpha}\) satisfy the Borsuk–Ulam property; (b) there are representatives \({({X_{1}^{m}}, \tau_1)}\) and \({({X_{2}^{m}}, \tau_2)}\) of \({\alpha}\) such that \({({X_{1}^{m}}, \tau_1)}\) satisfies the Borsuk–Ulam property but \({({X_{2}^{m}}, \tau_2)}\) does not; (c) no representative \({(X^m, \tau)}\) of \({\alpha}\) satisfies the Borsuk–Ulam property.  相似文献   

11.
Let \({\varphi}\) be a Musielak–Orlicz function satisfying that, for any \({(x,\,t)\in{\mathbb R}^n \times [0, \infty)}\), \({\varphi(\cdot,\,t)}\) belongs to the Muckenhoupt weight class \({A_\infty({\mathbb R}^n)}\) with the critical weight exponent \({q(\varphi) \in [1,\,\infty)}\) and \({\varphi(x,\,\cdot)}\) is an Orlicz function with uniformly lower type \({p^{-}_{\varphi}}\) and uniformly upper type \({p^+_\varphi}\) satisfying \({q(\varphi) < p^{-}_{\varphi}\le p^{+}_{\varphi} < \infty}\). In this paper, the author obtains a sharp weighted bound involving \({A_\infty}\) constant for the Hardy–Littlewood maximal operator on the Musielak–Orlicz space \({L^{\varphi}}\). This result recovers the known sharp weighted estimate established by Hytönen et al. in [J. Funct. Anal. 263:3883–3899, 2012].  相似文献   

12.
It is well known that if \({0.a_1a_2a_3\ldots}\) is the base-\({b}\) expansion of a number normal to base-\({b}\), then the numbers \({0.a_ka_{m+k}a_{2m+k}\ldots}\) for \({m\ge 2}\), \({k\ge 1}\) are all normal to base-\({b}\) as well. In contrast, given a continued fraction expansion \({\langle a_1,a_2,a_3,\ldots\rangle}\) that is normal (now with respect to the continued fraction expansion), we show that for any integers \({m\ge 2}\), \({k\ge 1}\), the continued fraction \({\langle a_k, a_{m+k},a_{2m+k},a_{3m+k},\ldots\rangle}\) will never be normal.  相似文献   

13.
If every k-membered subfamily of a family of plane convex bodies has a line transversal, then we say that this family has property T(k). We say that a family \({\mathcal{F}}\) has property \({T-m}\), if there exists a subfamily \({\mathcal{G} \subset \mathcal{F}}\) with \({|\mathcal{F} - \mathcal{G}| \le m}\) admitting a line transversal. Heppes [7] posed the problem whether there exists a convex body K in the plane such that if \({\mathcal{F}}\) is a finite T(3)-family of disjoint translates of K, then m = 3 is the smallest value for which \({\mathcal{F}}\) has property \({T-m}\). In this paper, we study this open problem in terms of finite T(3)-families of pairwise disjoint translates of a regular 2n-gon \({(n \ge 5)}\). We find out that, for \({5 \le n \le 34}\), the family has property \({T - 3}\) ; for \({n \ge 35}\), the family has property \({T - 2}\).  相似文献   

14.
Given numbers \({n,s \in \mathbb{N}}\), \({n \geq 2}\), and the \({n}\)th-degree monic Chebyshev polynomial of the first kind \({\widehat T_n(x)}\), the polynomial system “induced” by \({\widehat T_n(x)}\) is the system of orthogonal polynomials \({\{p_{k}^{n,s} \}}\) corresponding to the modified measure \({d \sigma^{n,s}(x)=\widehat T^{2s}_n(x) d\sigma(x)}\), where \({d\sigma(x)=1/\sqrt{1-x^{2}}dx}\) is the Chebyshev measure of the first kind. Here we are concerned with the problem of determining the coefficients in the three-term recurrence relation for the polynomials \({p^{n,s}_{k}}\). The desired coefficients are obtained analytically in a closed form.  相似文献   

15.
We prove that there exists an absolute constant \({\alpha > 1}\) with the following property: if K is a convex body in \({{\mathbb R}^n}\) whose center of mass is at the origin, then a random subset \({X\subset K}\) of cardinality \({{\rm card}(X)=\lceil\alphan\rceil }\) satisfies with probability greater than \({1-e^{-c_1n}}\)
$$K\subseteq c_2n\, {\rm conv}(X),$$
where \({c_1, c_2 > 0}\) are absolute constants. As an application we show that the vertex index of any convex body K in \({{\mathbb R}^n}\) is bounded by \({c_3n^2}\), where \({c_3 > 0}\) is an absolute constant, thus extending an estimate of Bezdek and Litvak for the symmetric case.
  相似文献   

16.
We consider the strong field asymptotics for the occurrence of zero modes of certain Weyl–Dirac operators on \({\mathbb{R}^3}\). In particular, we are interested in those operators \({\mathcal{D}_B}\) for which the associated magnetic field \({B}\) is given by pulling back a two-form \({\beta}\) from the sphere \({\mathbb{S}^2}\) to \({\mathbb{R}^3}\) using a combination of the Hopf fibration and inverse stereographic projection. If \({\int_{\mathbb{s}^2} \beta \neq 0}\), we show that
$$\sum_{0 \leq t \leq T} {\rm dim Ker} \mathcal{D}{tB}=\frac{T^2}{8\pi^2}\,\Big| \int_{\mathbb{S}^2}\beta\Big|\,\int_{\mathbb{S}^2}|{\beta}| +o(T^2)$$
as \({T\to+\infty}\). The result relies on Erd?s and Solovej’s characterisation of the spectrum of \({\mathcal{D}_{tB}}\) in terms of a family of Dirac operators on \({\mathbb{S}^2}\), together with information about the strong field localisation of the Aharonov–Casher zero modes of the latter.
  相似文献   

17.
18.
We prove weighted \({L^p}\)-Liouville theorems for a class of second-order hypoelliptic partial differential operators \({\mathcal{L}}\) on Lie groups \({\mathbb{G}}\) whose underlying manifold is \({n}\)-dimensional space. We show that a natural weight is the right-invariant measure \(\check{H}\) of \({\mathbb{G}}\). We also prove Liouville-type theorems for \({C^{2}}\) subsolutions in \({L^{p}(\mathbb{G},\check{H})}\). We provide examples of operators to which our results apply, jointly with an application to the uniqueness for the Cauchy problem for the evolution operator \({\mathcal{L}-\partial_{t}}\).  相似文献   

19.
We study isometric cohomogeneity one actions on the \((n+1)\)-dimensional Minkowski space \(\mathbb {L}^{n+1}\) up to orbit-equivalence. We give examples of isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\) whose orbit spaces are non-Hausdorff. We show that there exist isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\), \(n \ge 3\), which are orbit-equivalent on the complement of an n-dimensional degenerate subspace \(\mathbb {W}^n\) of \(\mathbb {L}^{n+1}\) and not orbit-equivalent on \(\mathbb {W}^n\). We classify isometric cohomogeneity one actions on \(\mathbb {L}^2\) and \(\mathbb {L}^3\) up to orbit-equivalence.  相似文献   

20.
We show that every uniform domain of \({{{\mathbb {R}}}^n}\) with \(n\ge 2\) is a Morrey–Sobolev \({\mathscr {W}}^{1,\,p}\)-extension domain for all \(p\in [1,\,n)\), and moreover, that this result is essentially the best possible for each \(p\in [1,\,n)\) in the sense that, given a simply connected planar domain or a domain of \({{{\mathbb {R}}}^n}\) with \(n\ge 3\) that is quasiconformal equivalent to a uniform domain, if it is a \({\mathscr {W}}^{1,\,p} \)-extension domain, then it must be uniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号