首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
Long-wavelength vertical cavity surface emitting lasers (VCSELs) are considered the best candidate for the future low-cost reliable light sources in fiber communications. However, the absence of high refractive index contrast in InP-lattice-matched materials impeded the development of 1.3–1.5 μm VCSELs. Although wafer fusions provided the alternative approaches to integrate the InP-based gain materials with the GaAs/AlAs materials for their inherent high refractive index contrast, the monolithic InP-based lattice-matched distributed Bragg reflectors (DBRs) are still highly attractive and desirable. In this report, we demonstrate InP/InGaAlAs DBRs with larger refractive index contrast than InP/InGaAsP and InAlAs/InGaAlAs DBRs. The switching between InP and InGaAlAs layers and growth rate control have been done by careful growth interruption technique and accurate in situ optical monitoring in low-pressure metal organic chemical vapor deposition. A 35 pairs 1.55 μm centered InP/InGaAlAs DBRs has the stopband of more than 100 nm and the highest reflectivity of more than 99%. A VCSEL structure incorporating 35 pairs InP/InGaAlAs DBR as the bottom mirror combined with a 2λ thick periodic gain cavity and 10 pairs SiO2/TiO2 top dielectric mirrors was fabricated. The VCSELs lased at 1.56 μm by optical pumping at room temperature with the threshold pumping power of 30 mW.  相似文献   

2.
Sb-assisted GaInNAs/GaAs quantum wells (QWs) with high (42.5%) indium content were investigated systematically. Transmission electron microscopy, reflection high-energy electron diffraction and photoluminescence (PL) measurements reveal that Sb acts as a surfactant to suppress three-dimensional growth. The improvement in the 1.55 μm range is much more apparent than that in the 1.3 μm range, which can be attributed to the difference in N composition. The PL intensity and the full-width at half maximum of the 1.55 μm single-QW were comparable with that of the 1.3 μm QWs.  相似文献   

3.
Photoluminescence (PL) properties of GaInNAs/GaAs quantum wells (QWs) with strain-compensated GaNAs layers grown by molecular beam epitaxy are investigated. The temperature-dependent PL spectra of GaInNAs/GaAs QW with and without GaNAs layers are compared and carefully studied. It is shown that the introduction of GaNAs layers between well and barrier can effectively extend the emission wavelength, mainly due to the reduction of the barrier potential. The PL peak position up to 1.41 μm is observed at the room temperature. After adding the GaNAs layers into QW structures, there is no essential deterioration of luminescence efficiency. N-induced localization states are also not remarkably influenced. It implies that with optimized growth condition, high-quality GaInNAs/GaAs QWs with strain-compensated GaNAs layers can be achieved.  相似文献   

4.
Si-rich silicon oxide (SiOx, 1<x<2) films were prepared by RF magnetron reactive sputtering or co-sputtering on the Si(1 1 1) substrates. X-ray diffraction patterns showed that the peak of silicon nanocrystals (NCs), separated from SiOx films, had (1 1 1) preferred orientation. The results of scanning electron microscopy indicated the Si NCs uniting into clusters. We demonstrated that the photoluminescence (PL) peaks at 650 nm was caused by defect center. In particular, we discussed the correlation between the PL and the structure of SiOx films. The mean size of the Si NCs was estimated to be about 3 nm by the PL peak position.  相似文献   

5.
A high density of 1.02×1011 cm−2 of InAs islands with In0.15Ga0.85As underlying layer has been achieved on GaAs (1 0 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 μm photoluminescence (PL) from InAs islands with In0.15Ga0.85As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dots devices.  相似文献   

6.
The photoluminescence (PL) mechanisms of as-grown GaInNAs/GaAs quantum well were investigated by temperature-dependent PL measurements. An anomalous two-segmented trend in the PL peak energy vs. temperature curve was observed, which has higher and lower temperature-dependent characteristics at low temperature (5–80 K) and high temperature (above 80 K), respectively. The low and high-temperature segments were fitted with two separate Varshni fitting curves, namely Fit_low and Fit_high, respectively, as the low-temperature PL mechanism is dominated by localized PL transitions while the high-temperature PL mechanism is dominated by the e1–hh1 PL transition. Further investigation of the PL efficiency vs. 1/kT relationship suggests that the main localized state is located at 34 meV below the e1 state. It is also found that the temperature (80 K) at which the PL full-width at half-maximum changes from linear trend to almost constant trend correlates well with the temperature at which the PL peak energy vs. temperature curve changes from Fit_low to Fit_high.  相似文献   

7.
The effects of matrix materials on the structural and optical properties of self-assembled InAs quantum dots (QDs) grown by a molecular beam epitaxy were investigated by atomic force microscopy, cross-sectional transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. Cross-sectional TEM image indicated that the average lateral size and height of InAs QDs in a GaAs matrix on a GaAs substrate were 20.5 and 5.0 nm, respectively, which showed the PL peak position of 1.19 μm at room temperature. The average lateral size and height of InAs QDs buried in an InAlGaAs matrix on InP were 26.5 and 3.0 nm, respectively. The PL peak position for InP-based InAs QDs was around 1.55 μm at room temperature. If we only consider the size quantization effects, the difference in PL peak position between two QD systems with different matrices may be too large. The large difference in peak position can be mainly related to the QD size as well as the strain between the QDs and the matrix materials. The intermixing between the QDs and the matrix materials can partially change the In composition of QDs, resulting in the modification of the optical properties.  相似文献   

8.
The properties of self-assembled InAs quantum dots (QDs) grown by molecular beam epitaxy on GaAs substrates were investigated. The surface properties of samples were monitored by reflection high-energy electron diffraction to determine growth. Photoluminescence (PL) and transmission electron microscope (TEM) were then used to observe optical properties and the shapes of the InAs-QDs. Attempts were made to grow InAs-QDs using a variety of growth techniques, including insertion of the InGaAs strained-reducing layer (SRL) and the interruption of In flux during QD growth. The emission wavelength of InAs-QDs embedded in a pure GaAs matrix without interruption of In flux was about 1.21 μm and the aspect ratio was about 0.21. By the insertion InGaAs SRL and interruption of In flux, the emission wavelength of InAs-QDs was red shifted to 1.37 μm and the aspect ratio was 0.37. From the PL and TEM analysis, the properties of QDs were improved, particularly when interruption techniques were used.  相似文献   

9.
We report on studies of an In0.12Ga0.88N/GaN structure with three 35 Å thick quantum wells (QWs) grown by metalorganic vapor phase epitaxy with employment of mass transport. The mass-transport regions demonstrate a threading dislocation density less than 107 cm−2. The photoluminescence (PL) spectrum is dominated by a 40 meV—narrow line centered at 2.97 eV at 2 K. This emission has a typical PL decay time of about 5 ns at 2 K within the PL contour. An additional line with longer decay time (about 200 ns) is observed at an energy about 2.85 eV. The position of this line shifts towards higher energies with increasing excitation power. The data are consistent with a model, where the PL originates from at least two nonequivalent QWs, which could be realized due to a potential gradient across the layers.  相似文献   

10.
The structural, optical, and electrical properties of GaN films grown on silica glass substrate by metalorganic chemical vapor deposition were studied. X-ray diffraction showed that the films were grown in hexagonal structure with a predominant (0 0 0 2) peak. A broad and strong band-edge emission and very weak yellow luminescence in photoluminescence (PL) spectra were observed. And the temperature dependence of the PL spectra was extensively studied. The thermal quenching activation energy was found to be very close to the donor activation energy determined from the temperature dependence of the carrier concentration. Longitudinal optical phonons were found to be responsible for the PL broadening above 100 K.  相似文献   

11.
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively.  相似文献   

12.
We have been developing a zone growth method for an InxGa1−xAs single crystal with a uniform InAs composition, using an InGaAs source, InGaAs melt and InGaAs seed charged in a crucible. This time, we modified the zone growth method to increase the length of an InGaAs zone crystal. A gap created between the wall around the InGaAs source and the inner wall of the crucible effectively prevents the interruption in normal zone growth because it changes the directions of heat current in the source. In addition, we found that it is very important for single crystal growth that no rotation of the crucible takes place during zone growth, because the degree of mixing caused by melt convection is reduced. The zone growth region of the obtained InGaAs crystal is almost exclusively of single-crystal-type, and it is about 26 mm long, which is 1.5 times the region length of the zone single crystal reported previously. We believe that a longer growth period could have further increased the length of our zone crystal, because some of the source remained. The InAs composition (x) of the zone crystal is greater than 0.3, and the crystal diameter is 15 mm.  相似文献   

13.
We studied the selective growth behaviors of InP through narrow openings (<2 μm) by metal-organic chemical vapor deposition. The lateral overgrowth was observed to be significantly affected by both the opening width and orientation. It was found that the lateral overgrowth length reached the maximum at 60° off [0 1 1] direction. The lateral overgrowth also showed a ‘diffraction-like’ behavior, with the overgrowth length increasing with decreasing opening width. Based on these results, a novel InP/InGaAs heterojunction bipolar transistor (HBT) structure with extrinsic base laterally overgrown on SiO2 is proposed. The device behaviors of the laterally regrown-base HBT prototypes are demonstrated.  相似文献   

14.
The effects of multi-step rapid thermal annealing (RTA) for the self-assembled InAs quantum dots (QDs), which were grown by a molecular beam epitaxy (MBE), were investigated through photoluminescence (PL) and transmission electron microscopy (TEM). Postgrowth multi-step RTA was used to modify the structural and optical properties of the self-assembled InAs QDs. Postgrowth multi-step RTAs are as follows: one step (20 s at 750 °C); two step (20 s at 650 °C, 20 s at 750 °C); three step (30 s at 450 °C, 20 s at 650 °C, 20 s at 750 °C). It is found that significant narrowing of the luminescence linewidth (from 132 to 31 meV) from the InAs QDs occurs together with about 150 meV blueshift by two-step annealing, compared to as-grown InAs QDs. Observation of transmission electron microscopy (TEM) shows the existence of the dots under one- and two-step annealing but the disappearance of the dots by three-step annealing. Comparing with the samples under only one-step annealing, we demonstrate a significant enhancement of the interdiffusion in the dot layer under multi-step annealing.  相似文献   

15.
ZnO films on Al2O3 substrate were grown by using a pulsed laser deposition method. Through photoluminescence (PL) and X-ray diffraction (XRD) measurements, the optimum growth conditions for the ZnO growth were calculated. The results of the XRD measurement indicate that ZnO film was strongly oriented to the c-axis of hexagonal structure and epitaxially crystallized under constraints created by the substrate. The full-width half-maximum for a theta curve of the (0 0 0 2) peak was 0.201°. Also, from the PL measurement, the grown ZnO film was observed to be a free exciton, which indicates a high quality of epilayer. The Hall mobility and carrier density of the ZnO film at 293 K were estimated to be 299 cm2/V sec and , respectively. The absorption spectra revealed that the temperature dependence of the optical band gap on the ZnO films was .  相似文献   

16.
An Mg-doped p-GaN layer was grown by the metalorganic chemical vapor deposition method. The dissociation extent of hydrogen-passivated Mg acceptors in the p-GaN layer through Mg activation annealing was estimated by using room-temperature cathodoluminescence (CL) spectroscopy. The CL measurement revealed that the CL spectra intensities tend to increase with increasing the activation annealing temperature. The sample annealed at 925 °C showed the most intense emission and the narrowest width among the emission peaks. Consequently, it was the most excellent dissociation extent of Mg–H complexes caused by the Mg activation annealing. The hole concentration under this optimum condition was 1.3×1017 cm−3 at room temperature. The photoluminescence (PL) measurement showed a 2.8 eV band having characteristically a broad peak in heavily Mg-doped GaN at room temperature. By analyzing the PL results, we learned that this band was associated with the deep donor–acceptor pair (DAP) emission rather than with the emission caused by the transition from the conduction band to deep acceptor level. The four emission peaks in the resolved 2.8 eV band were emitted by transiting from deep donor levels of 0.14, 0.26, 0.40, and 0.62 eV below the conduction band to the shallow Mg acceptor level of 0.22 eV above the valence band.  相似文献   

17.
Selective-area growth (SAG) of InGaN/GaN multiple quantum wells (MQWs) was performed by metalorganic vapor phase epitaxy (MOVPE). The layers of a blue light-emitting diode (LED), that includes five InGaN quantum wells, were grown on a patterned GaN template on a sapphire substrate. In order to elucidate the contribution of vapor-phase diffusion of group-III precursors to the in-plane modulation of luminescence wavelength, the width of a stripe selective growth area was 60 μm that is sufficiently larger than the typical surface diffusion length, with the mask width varied stepwise between 30 and 240 μm. The distribution of the luminescence wavelength from the MQWs was measured with cathode luminescence (CL) across the stripe growth area. The peak wavelength ranged between 420 and 500 nm. The peak shifted to longer wavelengths and became broader as the measured point approached to the mask edge. Such a shift in the peak wavelength exhibited parabolic profile in the growth area and the wider mask shifted the entire peak positions to longer wavelengths. These trends clearly indicate that the vapor-phase diffusion play a dominant role in the in-plane modulation of the luminescence wavelength in the SA-MOVPE of InGaN MQWs, when the size of a growth area and/or the mask width exceeds approximately 10 μm.  相似文献   

18.
In this paper we present a novel growth of grade-strained bulk InGaAs/InP by linearly changing group-III TMGa source flow during low-pressure metalorganic vapor-phase epitaxy (LP-MOVPE).The high-resolution X-ray diffraction (HRXRD) measurements showed that much different strain was simultaneously introduced into the fabricated bulk InGaAs/InP by utilizing this novel growth method. We experimentally demonstrated the utility and simplicity of the growth method by fabricating common laser diodes. As a first step, under the injection current of 100 mA, a more flat gain curve which has a spectral full-width at half-maximum (FWHM) of about 120 nm was achieved by using the presented growth technique. Our experimental results show that the simple and new growth method is very suitable for fabricating broad-band semiconductor optoelectronic devices.  相似文献   

19.
Strong red photoluminescence (PL) spectra appeared at porous silicon (PS) samples prepared by a chemical anodization of Fe-contaminated Si substrates. The Fe1000 sample with Fe contamination of 1000 ppb showed a ten times stronger red PL than that of the reference PS sample without any Fe contamination, and this sample also showed the higher thermal stability for PL spectra as compared with the reference PS sample. Furthermore, the PL intensity from the PS with Fe contamination is linearly proportional to the Fe-related trap concentrations of Si substrates obtained from DLTS. Especially, all the PS samples exhibit the same PL peak position regardless of Fe contamination concentrations, as compared with that of the reference PS. This means that there is no significant effect such as the variation of size distribution of nanocrystalline Si in PS layer formed on Fe-contaminated Si substrate. Based on the results of PL and DLTS, we found that the PL efficiency depends strongly on the Fe-related trap concentration in Si substrates.  相似文献   

20.
We prepared InGaN layers on GaN/sapphire substrates using rf-MBE. Photoluminescence (PL) from these layers, grown at different temperatures TS, shows that there is a strong tendency of GaN to form a separate phase as TS is increased from 600°C to 650°C. Concomitant with the phase separation, the PL from the InGaN phase broadens, which indicates that indium composition in this phase becomes increasingly non-uniform. Indium compositions measured by Rutherford backscattering (RBS) are consistent with these results. We also observed an increase in PL intensity for InGaN layers grown at higher temperatures. In this paper, we also report on preparing a top-contact InGaN/GaN light emitting diode. The device was operated at 447 nm and had the emission line width of 37 nm with no observable impurity related features. The turn-on voltage was 3.0 V. The output power was 20 μW at 60 mA drive current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号