首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Solutions of the complexes of hypervalent manganese, [Mn(III)(C(2)O(4))(3)](3)(-) (in oxalate buffers), [Mn(IV)(bigH)(3)](4+) (in biguanide buffers), and [(bipy)(2)Mn(III)(O)(2)Mn(IV)(bipy)(2)](3+) (in bipyridyl buffers) may be reduced by s(2) center reductants In(I), Sn(II), and Ge(II), yielding Mn(II) quantitatively. In all cases, rates are determined by the initial act of electron transfer, giving an s(1) transient (In(II), Sn(III), or Ge(III)); subsequent steps are rapid and kinetically silent. The In(I)-Mn(III) and Ge(II)-Mn(III) reactions are inhibited by added oxalate, whereas the Sn(II)-(Mn(III)Mn(IV)) reaction is strongly accelerated by Cl(-). The In(I)-Mn(IV) reaction is complicated by formation of a 1:1 addition compound In(I).Mn(IV). We find no evidence for two-unit steps in any of these systems.  相似文献   

2.
Among the many mechanisms for the oxidation of guanine derivatives (G) assisted by transition metals, Ru(III) and Pt(IV) metal ions share basically the same principle. Both Ru(III)- and Pt(IV)-bound G have highly positively polarized C8-H's that are susceptible to deprotonation by OH(-), and both undergo two-electron redox reactions. The main difference is that, unlike Pt(IV), Ru(III) is thought to require O(2) to undergo such a reaction. In this study, however, we report that [Ru(III)(NH(3))(5)(dGuo)] (dGuo = deoxyguanosine) yields cyclic-5'-O-C8-dGuo (a two-electron G oxidized product, cyclic-dGuo) without O(2). In the presence of O(2), 8-oxo-dGuo and cyclic-dGuo were observed. Both [Ru(II)(NH(3))(5)(dGuo)] and cyclic-dGuo were produced from [Ru(III)(NH(3))(5)(dGuo)] accelerated by [OH(-)]. We propose that [Ru(III)(NH(3))(5)(dGuo)] disproportionates to [Ru(II)(NH(3))(5)(dGuo)] and [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)], followed by a 5'-OH attack on C8 in [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)] to initiate an intramolecular two-electron transfer from dGuo to Ru(IV), generating cyclic-dGuo and Ru(II) without involving O(2).  相似文献   

3.
《Analytical letters》2012,45(4):267-271
Abstract

A spectrophotometric method is described for the determination of 25–150μ;g of rhodium (III) using 1-(2-pyridylazo)-2-naphthol. One milligram of Ir(III) or Ir(IV), 200μ;g Ru(IV), 400μ;g Os(IV), 350μ;g Pt(IV), 5 mg Ag(I), and 100μ;g Au(III) do not interfere. Larger amounts of silver and gold are removed as AgCl and, after reduction with ascorbic acid, Au metal. A modification of the method permits the successive determination of 4–100μ;g of Hh(III) and 50–500μ;g of Pd(II) in a single sample.  相似文献   

4.
He XC 《Talanta》1991,38(3):319-323
The ion flotation of rhodium(III) and palladium(II) with some anionic surfactants has been investigated. Two flotation procedures are proposed for the separation of some platinum metals, based on differences in the kinetic properties of the chloro-complexes of rhodium(III), palladium(II) and platinum(IV). The first involves the selective flotation of Rh(H(2)O)(3+)(6) from PdCl(2-)(4) and PtCl(2-)(6) in dilute hydrochloric acid with sodium dodecylbenzenesulfonate (SDBS). After precipitation of the hydroxide and redissolution in dilute acid, the Rh(III) is converted into Rh(H(2)O)(3+)(6), Pd(II) and Pt(IV) remaining as PdCl(2-)(4) and PtCl(2-)(6) respectively, and separation is achieved by floating the Rh(H(2)O)(3+)(6) with SDBS. The second is for separation of Pd(II). Prior to flotation, the solution of PdCl(2-)(4) and PtCl(2-)(6) is heated with ammonium acetate to convert PdCl(2-)(4) into Pd(NH(3))(2+)(4). The chloro-complex of Pt(IV) is unaffected. The complex cation, Pd(NH(3))(2+)(4), is then selectively floated with SDBS. The procedures are fast, simple and do not require expensive reagents and apparatus.  相似文献   

5.
The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (?)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II.  相似文献   

6.
Open-framework cadmium succinates, [CN(3)H(6)](2)[Cd(2)(C(4)H(4)O(4))(Cl)(2)], I; [CN(3)H(6)](2)[Cd(C(4)H(4)O(4))(2)], II; Cd(2)(C(4)H(4)O(4))(2)(C(4)N(2)H(8))(H(2)O)(3), III; [C(4)N(2)H(12)][Cd(2)(C(4)H(4)O(4))(3)].4H(2)O, IV; Cd(C(4)H(4)O(4))(H(2)O)(2), V; and Cd(3)(C(4)H(4)O(4))(2)(OH)(2)], VI, of different dimensionalities have been synthesized by hydrothermal procedure by employing two different strategies, one involving the reaction of Cd salts with organic-amine succinates and the other involving the hydrothermal reaction of Cd salts with a mixture of succinic acid and the organic amine. While the latter procedure yields structures without any amine in them, the former gives rise to amine templated cadmium succinates with open architectures. By employing guanidinium succinate we have obtained I and II, and with piperazinium succinate we obtained III and IV. Of these I has a one-dimensional chain structure, IV has a layered structure, and II and III have three-dimensional architectures. The two cadmium succinates without incorporation of amine, V and VI, possess layered and three-dimensional structures, respectively. The three-dimensional structures II and III exhibit interpenetration similar to that in diamondoid and alpha-polonium type structures, respectively.  相似文献   

7.
The complexes [Ru(tpy)(acac)(Cl)], [Ru(tpy)(acac)(H(2)O)](PF(6)) (tpy = 2,2',2"-terpyridine, acacH = 2,4 pentanedione) [Ru(tpy)(C(2)O(4))(H(2)O)] (C(2)O(4)(2)(-) = oxalato dianion), [Ru(tpy)(dppene)(Cl)](PF(6)) (dppene = cis-1,2-bis(diphenylphosphino)ethylene), [Ru(tpy)(dppene)(H(2)O)](PF(6))(2), [Ru(tpy)(C(2)O(4))(py)], [Ru(tpy)(acac)(py)](ClO(4)), [Ru(tpy)(acac)(NO(2))], [Ru(tpy)(acac)(NO)](PF(6))(2), and [Ru(tpy)(PSCS)Cl] (PSCS = 1-pyrrolidinedithiocarbamate anion) have been prepared and characterized by cyclic voltammetry and UV-visible and FTIR spectroscopy. [Ru(tpy)(acac)(NO(2))](+) is stable with respect to oxidation of coordinated NO(2)(-) on the cyclic voltammetric time scale. The nitrosyl [Ru(tpy)(acac)(NO)](2+) falls on an earlier correlation between nu(NO) (1914 cm(-)(1) in KBr) and E(1/2) for the first nitrosyl-based reduction 0.02 V vs SSCE. Oxalate ligand is lost from [Ru(II)(tpy)(C(2)O(4))(H(2)O)] to give [Ru(tpy)(H(2)O)(3)](2+). The Ru(III/II) and Ru(IV/III) couples of the aqua complexes are pH dependent. At pH 7.0, E(1/2) values are 0.43 V vs NHE for [Ru(III)(tpy)(acac)(OH)](+)/[Ru(II)(tpy)(acac)(H(2)O)](+), 0.80 V for [Ru(IV)(tpy)(acac)(O)](+)/[Ru(III)(tpy)(acac)(OH)](+), 0.16 V for [Ru(III)(tpy)(C(2)O(4))(OH)]/[Ru(II)(tpy)(C(2)O(4))(H(2)O)], and 0.45 V for [Ru(IV)(tpy)(C(2)O(4))(O)]/[Ru(III)(tpy)(C(2)O(4))(OH)]. Plots of E(1/2) vs pH define regions of stability for the various oxidation states and the pK(a) values of aqua and hydroxo forms. These measurements reveal that C(2)O(4)(2)(-) and acac(-) are electron donating to Ru(III) relative to bpy. Comparisons with redox potentials for 21 related polypyridyl couples reveal the influence of ligand changes on the potentials of the Ru(IV/III) and Ru(III/II) couples and the difference between them, DeltaE(1/2). The majority of the effect appears in the Ru(III/II) couple. ()A linear correlation exists between DeltaE(1/2) and the sum of a set of ligand parameters defined by Lever et al., SigmaE(i)(L(i)), for the series of complexes, but there is a dramatic change in slope at DeltaE(1/2) approximately -0.11 V and SigmaE(i)(L(i)) = 1.06 V. Extrapolation of the plot of DeltaE(1/2) vs SigmaE(i)(L(i)) suggests that there may be ligand environments in which Ru(III) is unstable with respect to disproportionation into Ru(IV) and Ru(II). This would make the two-electron Ru(IV)O/Ru(II)OH(2) couple more strongly oxidizing than the one-electron Ru(IV)O/Ru(III)OH couple.  相似文献   

8.
Two new terpyridine dimanganese oxo complexes [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(CF(3)CO(2))(2)](+) (3) and [Mn(2)(III,III)(mu-O)(terpy)(2)(CF(3)CO(2))(4)] (4) (terpy = 2,2':6,2' '-terpyridine) have been synthesized and their X-ray structures determined. In contrast to the corresponding mixed-valent aqua complex [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(H(2)O)(2)](3+) (1), the two Mn atoms in 3 are not crystallographically equivalent. The neutral binuclear monooxo manganese(III,III) complex 4 exhibits two crystallographic forms having cis and trans configurations. In the cis complex, the two CF(3)CO(2)(-) ligands on each manganese adopt a cis geometry to each other; one CF(3)CO(2)(-) is trans to the oxygen of the oxo bridge while the second is cis. In the trans complex, the two coordinated CF(3)CO(2)(-) have a trans geometry to each other and are cis to the oxo bridge. The electrochemical behavior of 3 in organic medium (CH(3)CN) shows that this complex could be oxidized into its corresponding stable manganese(IV,IV) species while its reduced form manganese(III,III) is very unstable and leads by a disproportionation process to Mn(II) and Mn(IV) complexes. Complex 4 is only stable in the solid state, and it disproportionates spontaneously in CH(3)CN solution into the mixed-valent complex 3 and the mononuclear complex [Mn(II)(terpy)(2)](2+) (2), thereby preventing the observation of its electrochemical behavior.  相似文献   

9.
The reaction of aluminium(III) with Hydroxynaphtol Blue (HNB) in aqueous media at apparent pH 5.5 results in a red complex that is stable for at least 4 hr. Beer's Law is obeyed up to 1.6 microg/ml of aluminium(III) with an apparent molar absorptivity of 1.66 x 10(4) l.mol(-1). cm(-1) at 569 nm. This paper proposes procedures for aluminium(III) determination by ordinary and first-derivative spectrophotometry. The results demonstrated that the linear dynamic range is 0.03-1.60 microg/ml for ordinary spectrophotometry and 11.8-320.0 ng/ml for first derivative spectrophotometry. The HNB is not selectivity for aluminium, but the addition of EDTA allows the aluminium determination in the presence of accepted amounts of Ca(II), Mg(II), Mn(II), Ba(II), Sr(II), Cd(II), Pb(II), La(III), In(III), Bi(III) and Zn(II). The interference of Cu(II) and Hg(II) can be masked by thiosulphate. Ions such as UO(2)(II), Mo(VI), Co(II), Ti(IV) and PO(4)(III) do interfere seriously. This method was applied for aluminium determination in copper-base alloy, zinc-base alloy, magnesium-base alloy, iron ore, manganese ore, cement, dolomite, feldspar and limestone. The results indicated high accuracy and precision.  相似文献   

10.
The structural rearrangements triggered by oxidation of the dinuclear Mn complex [Mn(2)(bpmp)(mu-OAc)2]+(bpmp = 2,6-bis[bis(2-pyridylmethyl)amino]methyl-4-methylphenol anion) in the presence of water have been studied by combinations of electrochemistry with IR spectroscopy and with electrospray ionization mass spectrometry (ESI-MS). The exchange of acetate bridges for water (D2O) derived ligands in different oxidation states could be monitored by mid-IR spectroscopy in CD(3)CN-D(2)O mixtures following the v(as(C-O)) bands of bound acetate at 1594.4 cm(-1)(II,II), 1592.0 cm(-1)(II,III) and 1586.5 cm(-1)(III,III). Substantial loss of bound acetate occurs at much lower water content (< 0.5% v/v) in the III,III state than in the II,II and II,III states (> or = 10%). The ligand-exchange reactions do not initially reduce the overall charge of the complex but facilitate further oxidation by proton-coupled electron transfer as the water-derived ligands are increasingly deprotonated in higher oxidation states. In the IR spectra deprotonation could be followed by the formation of acetic acid (DOAc, approximately 1725 cm(-1), v(C-O)) from the released acetate (1573.6 cm(-1), v(as(C-O))). By the on-line combination of an electrochemical flow cell with ESI-MS several product complexes could be identified. A di-mu-oxo bridged III,IV dimer [Mn(2)(bpmp)(mu-O)(2)](2+)(m/z 335.8) can be generated at potentials below the III,III/II,III couple of the di-mu-acetato complex (0.61 V vs. ferrocene). The ligand-exchange reactions allow for three metal-centered oxidation steps to occur from II,II to III,IV in a potential range of only 0.5 V, explaining the formation of a spin-coupled III,IV dimer by photo-oxidation with [Ru[bpy)(3)](3+) in previous EPR studies.  相似文献   

11.
Singh T  Dey AK 《Talanta》1971,18(2):225-228
An extractive spectrophotometric procedure has been developed for the determination of palladium (II) at microgram levels. The palladium(II) chelate of 7-iodo-8-hydroxyquinoline-5-sulphonic acid is extracted into n-butanol. Extraction is maximal (95%) from 0.2M perchloric acid. Beer's law is valid at 430 nm over a wide range of palladium concentration from 2.5 ppm. The molar absorptivity is 958 1.mole(-1).mm(-1). The system can tolerate a large excess of Co(II), Ni(II), Rh(III), Pt(IV), Cr(III), W(VI), chloride, phosphate, citrate and tartrate. Small quantities of Ru(III), IR(III) and EDTA do not interfere, but serious interference is caused by Fe(III), V(V), Mo(VI) and Os(VIII).  相似文献   

12.
The role of different H-bonds in phases II, III, IV, and V of triammonium hydrogen disulfate, (NH(4)(+))(3)H(+)(SO(4)(2)(-))(2), has been studied by X-ray diffraction and (1)H solid-state MAS NMR. The proper space group for phase II is C2/c, for phases III and IV is P2/n, and for phase V is P onemacr;. The structures of phases III and IV seem to be the same. The hydrogen atom participating in the O(-)-H(+).O(-) H-bond in phase II of (NH(4)(+))(3)H(+)(SO(4)(2)(-))(2) at room temperature is split at two positions around the center of the crucial O(-)-H(+).O(-) H-bonding, joining two SO(4)(2)(-) tetrahedra. With decreasing temperature, it becomes localized at one of the oxygen atoms. Further cooling causes additional differentiation of possibly equivalent sulfate dimers. The NH(4)(+) ions participate mainly in bifurcated H-bonds with two oxygen atoms from sulfate anions. On cooling, the major contribution of the bifurcated H-bond becomes stronger, whereas the minor one becomes weaker. This is coupled with rotation of sulfate ions. In all the phases of (NH(4)(+))(3)H(+)(SO(4)(2)(-))(2), some additional, weak but significant, reflections are observed. They are located between the layers of the reciprocal lattice, suggesting possible modulation of the host (NH(4)(+))(3)H(+)(SO(4)(2)(-))(2) structure(s). According to (1)H MAS NMR obtained for phases II and III, the nature of the acidic proton disorder is dynamic, and localization of the proton takes place in a broader range of temperatures, as can be expected from the X-ray diffraction data.  相似文献   

13.
Kumar N  Manku GS  Bhat AN  Jain BD 《Talanta》1970,17(9):873-876
Pyridine-2-aldoiumc (I) has been found to be a sensitive reagent for the gravimetric determination of palladium(II). From chloride medium, precipitation is complete at pH 3.0-11.0, and in solution containing 1NHNO(3) to pH6.0. The compositions of the precipitates (dried at 130 degrees ) correspond to PdL(2), and PdL(2). HNO(3) (HL representing the reagent) respectively. Pd(II) can be estimated gravimetncally in presence of acetate, oxalate, tartrate, phosphate, fluoride borate, perchlorate, Cu(II), Cd, Co(II), Fe(II), Ni, Zn, Pb, Bi, Sb(III), Pt(IV), Ir(IV), Ru(III), Rh(III); Os(IV) in quantities more than twice that of Pd(II), and Ag(I), Au(III) and Fe(II) even m traces cause serious interference. The yellow uranium(VI) complex with (I) is precipitated quantitatively over the pH range 3.5-10.5 and, after washing and drying corresponds to the composition (c(6)h(5)n(2)o)(2)uo(2), The uranium(VI) complex with 6-methylpyridine-2-aldoxime (II) is precipitated quantitatively over the pH range 3.0-10.5, and after washing and drying at 120-130 degrees corresponds to UO(2),(C(7),H(7),N(2)O)(2). Both (I) and (II) are suitable for the estimation of 1-50 mg of uranium(VI) in the presence of up to 10-fold quantities ofTh(IV), La(III) and Ce(III) even when present together. Ce(IV) in quantities more than three times that of U must be reduced to Ce(III). Tartrate, citrate, phosphate, Ti(IV) and Zr interfere, but acetate, oxalate, and borate do not.  相似文献   

14.
A spectrophotometric method has been developed for the determination of Molybdenum (VI) using 3-hydroxy-2-(2'-thienyl)-4H-chromen-4-one as a complexing agent. The complex formed was dissolved in water in the presence of Triton X-100 and exhibits an absorption maximum at 410 nm. A large number of metal ions like Co(II), Ni(II), Mn(II), Cr(III), Zn(II), Cu(II), Hg(II), Bi(III), Fe(II), Fe(III), Zr(IV), V(V) can be tolerated at an appreciable concentrations. Molar absorptivity and Sandell's sensitivity of the method is 2.80 x 10(5) l mol-1cm-1 and 3.42 x 10(-4) micrograms cm-2, respectively. Beer's law is obeyed in the concentration range of 0.01-0.4 ppm Mo(VI). Aliquots containing 0.2 ppm of Mo(VI) give a mean absorbance of 0.56 with a relative standard deviation of 1.3%.  相似文献   

15.
Madan U  Kakkar LR 《Talanta》1982,29(7):623-625
A simple, sensitive and selective spectrophotometric method for determination of molybdenum is described. A solution containing 100 mug of Mo in 2.5M hydrochloric acid is treated with ascorbic acid and ammonium thiocyanate and after standing for 8 min is shaken with an equal volume of ethyl methyl ketone for 30 sec. The absorbance of the complex is measured at 465 nm against a reagent blank. The complex is stable for 1 hour. There is no interference from Re(VII), SO(2-)(4), Cl(-), CH(3)COO(-), PO(3-)(4), NO(-)(3), C(2)O(2-)(4), citrate or tartrate, and at least 5 mg of U(VI), 10 mg of Cr(III, VI), Th, or Ni, and 20 mg of W(VI) Can be tolerated. Vanadium(V) interferes at the 500 mug level, and fluoride slightly decreases the absorbance.  相似文献   

16.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

17.
A new catalytic spectrophotometric method is described for the determination of trace amounts of Al(III). The methods based on catalytic action of Al(III) on the oxidation of indigo carmine (IC) by ammonium persulfate in hexamethylene tetramine-hydrochloric acid ((CH2)6N4-HCl) buffer medium (pH 5.4) and in the presence of surfactant-TritonX-100. The effects of some factors on the reaction speed were investigated. Aluminium concentration is linear for 0-1.2x10(-7) g/ml in this method. The detection limit of the proposed method is 1.96x10(-8) g/ml. Most of the foreign ions except for Cu(II), Fe(III) do not interfere with the determination, and the interference of Cu(II) and Fe(III) in this method can be removed by extraction with sodium diethyldithiocarbamate-carbon tetrachloride (DDTC-CCl4). This system is a quasi-zero-order reaction for Al(III), but it is a quasi-first-order reaction for IC. The apparent rate constant is 2.62x10(-5) s-1 and the apparent activation energy is 6.60 kJ/mol in the system. The proposed method was applied to the determination of trace aluminium(III) in real samples with satisfactory results.  相似文献   

18.
Nanewar RR  Tandon U 《Talanta》1978,25(6):352
A spectrophotometric method for the determination of vanadium in biological materials with N-benzylbenzohydroxamic acid is proposed. The method is highly selective for vanadium and is free from rigid control of reaction conditions. No separation of iron prior to the determination of vanadium is necessary. Cu(II), Co(II), Ni, Mn(II), Cr(III), Ce(IV), Zr, Mo(VI), Ca, Sr, Ba, UO(2)(II) and many others metal ions do not interfere. Fairly large quantities of Ti(IV) and W(VI) are tolerated.  相似文献   

19.
Solutions 0.03-0.05 M in gallium(I) can be generated by treatment of the "mixed" halide Ga(I)Ga(III)Cl(4) with cold water under argon and then removing the precipitated metallic gallium and Ga(OH)(3) by centrifugation. Ga(I) is lost from such preparations with a half-life of about 3 h at 0 degrees C. These solutions, which may be handled by conventional techniques, readily reduce I(3)(-), IrCl(6)(2)(-), Fe(bipy)(3)(3+), Fe(NCS)(2+), aquacob(III)alamin, and a group of ring-substituted derivatives of Ru(NH(3))(5)(py)(3+) but are inert to (NH(3))(5)CoCl(2+) and (NH(3))(5)CoBr(2+). All reactions give Ga(III). Reduction of HCrO(4)(-) in 2-ethyl-2-hydroxybutanoate buffers (pH 3.6) yields a Cr(IV) chelate of the buffering anion but forms Cr(III) when carried out in 0.01 M H(+). Reactions of le(-) oxidants proceed via successive single changes with the conversion Ga(II) --> Ga(III) much more rapid than Ga(I) --> Ga(II). Only for the reactions of I(3)(-) and Fe(NCS)(2+) is there evidence for redox bridging.  相似文献   

20.
Two methods have been developed for the determination of boron impurities in silicon-doped gallium arsenide (GaAs) for electronics. The first method employs the electrothermal atomic absorption spectrometry (ETAAS), the second, the UV-Vis molecular absorption spectrophotomety. In both cases the GaAs sample is decomposed with aqua regia (1+1). To prevent Ga(III) interference on the ETAAS determination of boron, a double extraction of the chlorogallic acid (HGaCl4) in diethyl ether is performed. To improve the overall ETAAS performance, the graphite tubes were pre-treated with iridium(III) and tungsten(IV). A mixed chemical modifier containing Ni(II), Sr(II) and citric acid was also used. The characteristic mass (m0) is 301 +/- 47 pg and the detection limit (3sB) is 2.4 microg g(-1). The classic UV-Vis spectrophotometric procedure using curcumin was also extended to the determination of boron in GaAs. By masking Ga(III) with EDTA and a preliminary extraction of boron with 2-ethyl-hexane 1,3-diol, performed on a semi-micro scale, a detection limit of 0.6 microg g(-1) was achieved. Both methods were applied to the analysis of two Si-doped GaAs samples which were suspected of being boron-contaminated. Results are compared with those obtained by direct analysis of the decomposed sample solution using the inductively coupled plasma atomic emission spectrometry (ICP-AES).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号