首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
The luminescence of several titanium-activated stannates and zirconates with spinel, perovskite, K2NiF4, pyrochlore, and fluorite structure is reported. For most compounds two emissions are observed, one blue and one yellow. Some compounds show only yellow emission and there is one compound with only blue emission. These results can be explained by one model, based on the occurrence of two different titanate centres, viz., a regular center and a defect center.  相似文献   

2.
The first examples of lanthanide(III) organoarsonates, Ln(L(1))(H(2)O)(3) (Ln = La (1), H(3)L(1) = 4-hydroxy-3-nitrophenylarsonic acid), Ln(L(1))(H(2)O)(2) (Ln = Nd (2), Gd (3)), and mixed-ligand lanthanide(III) organoarsonates, Ln(2)(HL(1))(2)(C(2)O(4))(H(2)O)(2) (Ln = Nd (4), Sm (5), Eu (6)), were hydrothermally synthesized and structurally characterized. Compounds 1-3 feature a corrugated lanthanide arsonate layer, in which 1D lanthanide arsonate inorganic chains are further interconnected via bridging L(1)(3-) ligands. Compounds 4-6 exhibit a complicated 3D network. The interconnection of the lanthanide(III) ions by the bridging arsonate ligand leads to the formation of a novel 3D framework with long narrow 1D tunnels along the a-axis, with the oxalate anions are located at the above tunnels and bridging with lanthanide(III) ions. Compounds 2 and 4 exhibit the characteristic emission bands of the Nd(III) ion, whereas compound 6 displays the characteristic emission bands of the Eu(III) ion. The magnetic properties of compounds 3-6 were also investigated.  相似文献   

3.
The radiation tolerance of synthetic pyrochlore and defect fluorite compounds has been studied using ion irradiation. We show that the results can be quantified in terms of the critical temperature for amorphization, structural parameters, classical Pauling electronegativity difference, and disorder energies. Our results demonstrate that radiation tolerance is correlated with a change in the structure from pyrochlore to defect fluorite, a smaller unit cell dimension, and lower cation-anion disorder energy. Radiation tolerance is promoted by an increase in the Pauling cation-anion electronegativity difference or, in other words, an increase in the ionicity of the chemical bonds. A further analysis of the data indicates that, of the two possible cation sites in ideal pyrochlore, the smaller B-site cation appears to play the major role in bonding. This result is supported by ab initio calculations of the structure and bonding, showing a correlation between the Mulliken overlap populations of the B-site cation and the critical temperature.  相似文献   

4.
镧系水合离子的密度泛函理论研究   总被引:3,自引:2,他引:1  
戴瑛  黎乐民 《化学学报》2001,59(2):168-172
用密度泛函理论(DFT)方法研究了镧系水合离子[Ln(H2O9)]^3+(Ln=Ce,Pr,Nd,Pm,Ho,Er,Tm,Yb)的几何构型、电荷分布和Ln^3+与水的结合能,计算结果与实验基本符合,表明DFT方法也适用于计算镧系离子与中性配体形成的化合物,对计算结果的分析表明,Ln^3+与H2O之间主要通过Ln5d轨道与氧孤对电子相互作用成键而结合,其余轨道起的作用比较小,用镧系化合物成键模型解释了镧系离子与水的结合能从La到Lu逐渐增加的事实。  相似文献   

5.
采用原位显微Raman光谱技术详细考察了焙烧温度和焙烧时间对La(OH)3分解制备的La2O3结构以及过氧物种光诱导生成性能的影响,结果表明,经700℃焙烧所得La2O3样品较经800℃以上长时间焙烧的样品更有利于过氧物种的生成.对La(OH)3热分解过程的原位XRD测试结果表明,焙烧温度需达到近700℃才可使La(OH)3完全转化为La2O3.在700℃焙烧的样品上,除了六方相的La2O3外,还可检出介稳态的立方相La2O3.经800℃以上长时间(≥5 h)焙烧后,介稳态的立方相La2O3将转化为稳定的六方相La2O3物种.在相同的实验条件下,立方相的稀土倍半氧化物较六方相更有利于过氧物种的光诱导生成,其原因可能源于前者含更多氧空位,因而更有利于对分子氧的吸附和活化.  相似文献   

6.
Single-phase Ln4Ni3O8 (Ln = La, Nd) nickelates were synthesized and their crystal structures were determined by Rietveld refinement of powder neutron diffraction data. The crystal structures of these mixed-valent Ni1+/Ni2+ phases belong to the T'-type and are built by intergrowth of LnO2 fluorite layers with triple NiO2 infinite-layer structural blocks. The major driving force of transformation of the LnO rock-salt block of the parent Ln4Ni3O10-delta Ruddlesden-Popper phases to the fluorite arrangement in the reduced Ln4Ni3O8 phases is attributed to internal structural stress. This transformation allows longer Ni-O bonds in Ln4Ni3O8 without overstretching of the Ln-O bonds, especially in the equatorial plane. The observed displacement of Ni atoms from the outer NiO2 planes toward the Ni atom of the central NiO2 plane in Ln4Ni3O8 is ascribed to large electrostatic repulsion from the fluorite part of the structure. X-ray absorption spectra near the K-edge of Ni suggest that the charge density on the nickel ion is similar for all members of the T'-type Lnn+1NinO2n+2 homologous series, which correlates with nearly constant Ni-O bond lengths observed in all the reduced nickelates. This suggests that the formal changes in the valence state of Ni affect the covalency of the Ni-O bond.  相似文献   

7.
Highly water-soluble lanthanum and cerium citrates or malates with ethylenediaminetetraacetate (NH(4))(8)[Ln(2)(Hcit)(2)(EDTA)(2)]·9H(2)O [Ln = La, 1; Ce, 2], K(8)[La(2)(Hcit)(2)(EDTA)(2)]·16H(2)O (3) and K(6)[Ln(2)(Hmal)(2)(EDTA)(2)]·14H(2)O [Ln = La, 4; Ce, 5] (H(4)cit = citric acid, H(3)mal = malic acid, and H(4)EDTA = ethylenediaminetetracetic acid) were prepared from the reactions of lanthanide ethylenediaminetetraacetate trihydrates with citric or malic acid at pH 5.0-6.5. These compounds were characterized by elemental analyses, IR, TG-DTG, solution (13)C{(1)H} NMR, solid state (13)C NMR spectra and X-ray structural analyses. The main structural feature of the compounds consists of a dinuclear unit deca-coordinated by EDTA and citrate or malate. The α-hydroxy and α-carboxy groups of citrate and malate chelate in five-membered ring with one lanthanide ion, while one of the β-carboxy group coordinates with the other lanthanide ion, forming a dimeric structure. The other pendent β-carboxy groups in 1-3 form very strong intramolecular hydrogen bond with α-hydroxy groups [O1O7 2.594(4), 2.587(8) and 2.57(1) ? for 1-3 respectively]. (13)C NMR spectra of the lanthanum compounds show obvious downfield shifts based on solid and solution NMR measurements, indicating the coordinations of mixed-ligand in lanthanum complexes, while highfield shifts are observed in cerium complexes.  相似文献   

8.
Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized. A computational simulation based on a thermal spike model reveals that the strong ionizing radiation from swift heavy ions with a very high electronic energy loss of 52.2 keV nm(-1) can induce transient zones with temperatures well above the ZrO(2) melting point. The extreme electronic energy loss, coupled with the high energy state of the nanostructured materials and a high thermal confinement due to the less effective heat transport within the transient hot zone, may eventually be responsible for the ionizing radiation-induced amorphization without transforming to the tetragonal polymorph. The amorphization of nanocrystalline zirconia was also confirmed by 1.69 GeV Au ion irradiation with the electronic energy loss of 40 keV nm(-1). These results suggest that highly radiation tolerant materials in bulk forms, such as ZrO(2), may be radiation sensitive with the reduced length scale down to the nano-metered regime upon irradiation above a threshold value of electronic energy loss.  相似文献   

9.
Eight 2D and 3D metal-organic framework (MOF) rare earth naphthalenedisulfonates have been obtained. The different geometry of the naphthalenedisulfonic acids used as connectors [(1,5-NDS) and (2,6-NDS)] gives rise to the three new structure types. In Ln(OH)(1,5-NDS)H2O, LnPF-1 (lanthanide polymeric framework; Ln=La, Nd, Pr, Sm and Eu), the lanthanide ion is octacoordinated. Its 3D structure is formed by (Ln2O14)-S-(Ln2O14) infinite chains, connected through complete NDS connectors. LnPF-2 (Ln=Nd), with the same empirical formula as the former, and the lanthanide in octa- and nonacoordination, owns an arrangement of sulfonate bridges and neodymium polyhedra that gives rise to a 2D structure. [Ln5(2,6-NDS)3(OH)9(H2O)4](H2O)2, LnPF-3 (Ln=Nd, Eu), demonstrates that it is possible to obtain a 3D structure with (2,6-NDS), when a greater Ln/connector ratio is employed. It is worth pointing out the existence, in this latter family of compounds, of a mu5-OH group, whose hydrogen atom is very close to one-sixth Ln atom (distance Ln...H=2.09 A). The materials, with high thermal stability, act as active and selective bifunctional heterogeneous catalysts in oxidation of linalool yielding cyclic hydroxy ethers. The absence of any 3D Nd-Nd magnetic interaction is explained due to the inner nature of 4f orbitals of Nd3+, which do not favor the magnetic exchange. The influence of the polymeric frame matrix results in a better photoluminescence efficiency for NdPF-1.  相似文献   

10.
The effect of the incorporation of rare earth cations and fluoride anions into the ceria fluorite lattice has been studied. Ternary Ln-Ce-O (Ln = La, Pr, Nd) oxide gels of target Ln : Ce ratios of 1 : 4, 1 : 1.86 and 1 : 1, with and without added fluoride ion, have been prepared, and the oxide materials obtained after calcination at 1223 K examined. Incorporation of Ln results in the formation of Ln/CeO2 solid solutions at low Ln levels, but a microscopic mixture of two cubic phases, pure ceria and a Ln-Ce-O phase of composition Ce0.35La0.65O1.67, is obtained when a 1 : 1 ratio is employed. With fluoride pure CeO2 and LaF3 are the only phases present and no mixed Ln-Ce-O phase is formed. TEM shows that the microstructure of this material is complex. The nature of analogous Pr- and Nd-substituted ceria materials is also described.  相似文献   

11.
The class of oxygen-ion-conducting rare-earth pyrochlores has been considerably extended. New solid electrolytes, Ln2Ti2O7 (Ln = Dy-Lu) and Ln2Hf2O7 (Ln = Eu, Gd) pyrochlores, are intrinsic ionic conductors at elevated temperatures, as are the well known Ln2Zr2O7 (Ln = Sm-Gd) zirconates, which suggests that oxygen ion conduction in the rare-earth pyrochlore family has a general character. The thermodynamic order-disorder transitions that yield a PII cation- and anion-disordered pyrochlore phase possessing high oxygen ion conductivity occur throughout the rare-earth pyrochlore family: Ln2M2O7 (Ln = Sm-Lu; M = Ti, Zr, Hf). The composition-structure-oxygen-ionic conductivity relationship is analyzed for Ln2(M2 − x Ln x )O7 − δ (Ln = Sm-Lu; M = Ti, Zr, Hf) with x from 0 to 0.81.  相似文献   

12.
Dual shell-like nanoscopic magnetic clusters featuring a polynuclear nickel(II) framework encapsulating that of lanthanide ions (Ln = La, Pr, and Nd) were synthesized using Ni(NO3)(2).6H2O, Ln(NO3)(3).6H2O, and iminodiacetic acid (IDA) under hydrothermal conditions. Structurally established by crystallographic studies, these clusters are [La20Ni30(IDA)30(CO3)6(NO3)6(OH)30(H2O)12](CO3)(6).72H2O (1), [Ln20Ni21(C4H5NO4)21(OH)24(C2H2O3)6(C2O4)3(NO3)9(H2O)12](NO3)9.nH2O [C2H2O3 is the alkoxide form of glycolate; Ln = Pr (2), n = 42; Nd (3), n = 50], and {[La4Ni5Na(IDA)5(CO3)(NO3)4(OH)5(H2O)5][CO3].10H2O} infinity (4). Carbonate, oxalate, and glycolate are products of hydrothermal decomposition of IDA. Compositions of these compounds were confirmed by satisfactory elemental analyses. It has been found that the cluster structure is dependent on the identity of the lanthanide ion as well as the starting Ln/Ni/IDA ratio. The cationic cluster of 1 features a core of the Keplerate type with an outer icosidodecahedron of Ni(II) ions encaging a dodecahedral kernel of La(III). Clusters 2 and 3, distinctly different from 1, are isostructural, possessing a core of an outer shell of 21 Ni(II) ions encapsulating an inner shell of 20 Ln(III) ions. Complex 4 is a three-dimensional assembly of cluster building blocks connected by units of Na(NO3)/La(NO3)3; the structure of the building block resembles closely that of 1, with a hydrated La(III) ion internalized in the decanuclear cage being an extra feature. Magnetic studies indicated ferromagnetic interactions in 1, while overall antiferromagnetic interactions were revealed for 2 and 3. The polymeric, three-dimensional cluster network 4 displayed interesting ferrimagnetic interactions.  相似文献   

13.
Jiang HL  Ma E  Mao JG 《Inorganic chemistry》2007,46(17):7012-7023
Solid-state reactions of lanthanide(III) oxide (and/or lanthanide(III) oxychloride), MoO3 (or WO3), and TeO2 at high temperature lead to eight new luminescent compounds with four different types of structures, namely, Ln2(MoO4)(Te4O10) (Ln = Pr, Nd), La2(WO4)(Te3O7)2, Nd2W2Te2O13, and Ln5(MO4)(Te5O13)(TeO3)2Cl3 (Ln = Pr, Nd; M = Mo, W). The structures of Ln2(MoO4)(Te4O10) (Ln = Pr, Nd) feature a 3D network in which the MoO4 tetrahedra serve as bridges between two lanthanide(III) tellurite layers. La2(WO4)(Te3O7)2 features a triple-layer structure built of a [La2WO4]4+ layer sandwiched between two Te3O72- anionic layers. The structure of Nd2W2Te2O13 is a 3D network in which the W2O108- dimers were inserted in the large tunnels of the neodymium(III) tellurites. The structures of Ln5(MO4)(Te5O13)(TeO3)2Cl3 (Ln = Pr, Nd; M = Mo, W) feature a 3D network structure built of lanthanide(III) ions interconnected by bridging TeO32-, Te5O136-, and Cl- anions with the MO4 (M = Mo, W) tetrahedra capping on both sides of the Ln4 (Ln = Pr, Nd) clusters and the isolated Cl- anions occupying the large apertures of the structure. Luminescent studies indicate that Pr2(MoO4)(Te4O10) and Pr5(MO4)(Te5O13)(TeO3)2Cl3 (M = Mo, W) are able to emit blue, green, and red light, whereas Nd2(MoO4)(Te4O10), Nd2W2Te2O13, and Nd5(MO4)(Te5O13)(TeO3)2Cl3 (M = Mo, W) exhibit strong emission bands in the near-IR region.  相似文献   

14.
The substitution of Re into Bi2O3 allows stabilization of the delta-Bi2O3 structure by additional substitution of any lanthanide ion to give, for example, phases of composition Bi12.5La1.5ReO24.5. Some of these phases have been found to show exceptionally high oxide ion conductivity at low temperatures, ca 10-3 S cm-1 at 300 degrees C. The phases show a significant structural difference from other delta-Bi2O3 phases previously reported, with interstitial anion sites displaced further from the ideal fluorite position, (1/4,1/4,1/4).  相似文献   

15.
Lisowski J 《Inorganic chemistry》2011,50(12):5567-5576
The controlled formation of lanthanide(III) dinuclear μ-hydroxo-bridged [Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes (where X = H(2)O, NO(3)(-), or Cl(-)) of the enantiopure chiral macrocycle L is reported. The (1)H and (13)C NMR resonances of these complexes have been assigned on the basis of COSY, NOESY, TOCSY, and HMQC spectra. The observed NOE connectivities confirm that the dimeric solid-state structure is retained in solution. The enantiomeric nature of the obtained chiral complexes and binding of hydroxide anions are reflected in their CD spectra. The formation of the dimeric complexes is accompanied by a complete enantiomeric self-recognition of the chiral macrocyclic units. The reaction of NaOH with a mixture of two different mononuclear lanthanide(III) complexes, [Ln(1)L](3+) and [Ln(2)L](3+), results in formation of the heterodinuclear [Ln(1)Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes as well as the corresponding homodinuclear complexes. The formation of the heterodinuclear complex is directly confirmed by the NOESY spectra of [EuLuL(2)(μ-OH)(2)(H(2)O)(2)](4+), which reveal close contacts between the macrocyclic unit containing the Eu(III) ion and the macrocyclic unit containing the Lu(III) ion. While the relative amounts of homo- and heterodinuclear complexes are statistical for the two lanthanide(III) ions of similar radii, a clear preference for the formation of heterodinuclear species is observed when the two mononuclear complexes contain lanthanide(III) ions of markedly different sizes, e.g., La(III) and Yb(III). The formation of heterodinuclear complexes is accompanied by the self-sorting of the chiral macrocyclic units based on their chirality. The reactions of NaOH with a pair of homochiral or racemic mononuclear complexes, [Ln(1)L(RRRR)](3+)/[Ln(2)L(RRRR)](3+), [Ln(1)L(SSSS)](3+)/[Ln(2)L(SSSS)](3+), or [Ln(1)L(rac)](3+)/[Ln(2)L(rac)](3+), results in mixtures of homochiral, homodinuclear and homochiral, heterodinuclear complexes. On the contrary, no heterochiral, heterodinuclear complexes [Ln(1)L(RRRR)Ln(2)L(SSSS)(μ-OH)(2)X(2)](n+) are formed in the reactions of two different mononuclear complexes of opposite chirality.  相似文献   

16.
A series of uranyl and lanthanide (trivalent Ce, Nd) mellitates (mel) has been hydrothermally synthesized in aqueous solvent. Mixtures of these 4f and 5f elements also revealed the formation of a rare case of lanthanide-uranyl coordination polymers. Their structures, determined by XRD single-crystal analysis, exhibit three distinct architectures. The pure lanthanide mellitate Ln(2)(H(2)O)(6)(mel) possesses a 3D framework built up from the connection of isolated LnO(6)(H(2)O)(3) polyhedra (tricapped trigonal prism) through the mellitate ligand. The structure of the uranyl mellitate (UO(2))(3)(H(2)O)(6)(mel)·11.5H(2)O is lamellar and consists of 8-fold coordinated uranium atoms linked to each other through the organic ligand giving rise to the formation of a 2D 3(6) net. The third structural type, (UO(2))(2)Ln(OH)(H(2)O)(3)(mel)·2.5H(2)O, involves direct oxygen bondings between the lanthanide and uranyl centers, with the isolation of a heterometallic dinuclear motif. The 9-fold coordinated Ln cation, LnO(5)(OH)(H(2)O)(3), is linked to the 7-fold coordinated uranyl (UO(2))O(4)(OH) (pentagonal bipyramid) via one μ(2)-hydroxo group and one μ(2)-oxo group. The latter is shared between the uranyl bonding (U═O = 1.777(4)/1.779(6) ?) and a long Ln-O bonding (Ce-O = 2.822(4) ?; Nd-O = 2.792(6) ?). This unusual linkage is a unique illustration of the so-called cation-cation interaction associating 4f and 5f metals. The dinuclear motif is then further connected through the mellitate ligand, and this generates organic-inorganic layers that are linked to each other via discrete uranyl (UO(2))O(4) units (square bipyramid), which ensure the three-dimensional cohesion of the structure. The mixed U-Ln carboxylate is thermally decomposed from 260 to 280 °C and then transformed into the basic uranium oxide (U(3)O(8)) together with U-Ln oxide with the fluorite structural type ("(Ln,U)O(2)"). At 1400 °C, only fluorite type "(Ln,U)O(2)" is formed with the measured stoichiometry of U(0.63)Ce(0.37)O(2) and U(0.60)Nd(0.40)O(2-δ).  相似文献   

17.
Formation thermodynamics of binary and ternary lanthanide(III) (Ln = La, Ce, Nd, Eu, Gd, Dy, Tm, Lu) complexes with 1,10-phenanthroline (phen) and the chloride ion have been studied by titration calorimetry and spectrophotometry in N,N-dimethyl-formamide (DMF) containing 0.2 mol-dm–3 (C2H5)4NClO4 as a constant ionic medium at 25°C. In the binary system with 1,10-phenanthroline, the Ln(phen)3+ complex is formed for all the lanthanide(III) ions examined. The reaction enthalpy and entropy values for the formation of Ln(phen)3+ decrease in the order La > Ce > Nd, then increase in the order Nd < Eu < Gd < Dy, and again decrease in the order Dy > Tm > Lu. The variation is explained in terms of the coordination structure of Ln(phen)3+ that changes from eight to seven coordination with decreasing ionic radius of the metal ion. In the ternary Ln3+-Cl-phen system, the formation of LnCl(phen)2+, LnCl2(phen)+, and LnCl3(phen) was established for cerium(III), neodymium(III), and thulium(III), and their formation constants, enthalpies, and entropies were obtained. The enthalpy and entropy values are also discussed from the structural point of view.  相似文献   

18.
Sandwich-type lanthanide complexes with macrocyclic ligand cucurbit[6]uril (C 36H 36N 24O 12, CB[6]) were synthesized under hydrothermal conditions from aqueous solutions of lanthanide(III) bromides, CB[6], and 4-cyanopyridine. According to X-ray analysis (Ln = La, Pr, Dy, Ho, Er, and Yb), the compounds with different structural types of lanthanide cores have a common fragment where the tetranuclear hydroxo complex is sandwiched between two macrocycles {(IN@CB[6])Ln 4(mu 3-OH) 4(IN@CB[6])} (6+) (IN = isonicotinate). The photoluminescence (for Ln = Eu) and Fourier transform ion cyclotron resonance mass spectra (for Ln = Pr, Dy, and Er) were studied. The compounds are used for the first time as precursors for the synthesis of lanthanide-silver heterometallic coordination polymers. The chainlike crystal structure of polymers (Ln = La, Pr, and Dy) is constituted by the sandwich complexes linked via the coordination of IN nitrogen atoms to the silver atoms.  相似文献   

19.
Many known complex oxides of general formula A(2)B(2)X(7) adopt the pyrochlore structure, a key structure-type that has been shown to demonstrate a vast range of useful physical properties. Areas currently of much interest with respect to pyrochlores, include metal-insulator transitions, magnetic frustration/spin ices, magnetoresistance, superconductivity, ferroelectrics, O/F ionic conductivity, mixed conductivity, pigments and catalysis. We present some recent results on three types of pyrochlore materials that show unusual magnetic, optical and electronic behaviours associated with subtle structural and compositional changes. High-resolution powder neutron diffraction studies of the superconducting Cd(2)Re(2)O(7) and the ferroelectric Cd(2)Nb(2)O(7) have been undertaken on material cooled below room temperature. Both Cd(2)Re(2)O(7) and Cd(2)Nb(2)O(7) exhibit small structure distortions, in each case involving a distortion from a cubic unit cell, on cooling below approximately 180 K and possible models that can be used to describe the low-temperature structures and associated atomic displacements are developed and described in this article. A range of materials of the general formula Ca(1-x)Ln(x)TaO(2-x)N(1+x), x= 0.5 and x= 1, Ln = La-Yb have been synthesised and shown to adopt pyrochlore and/or perovskite structures. The absorption spectra of these materials are discussed in terms of their structures and compositions.  相似文献   

20.
Liu S  Li D  Xie L  Cheng H  Zhao X  Su Z 《Inorganic chemistry》2006,45(20):8036-8040
Reactions of 1:13 heteropoly anions [MV13O38](7-) (M = Mn, Ni) and lanthanide cations Ln3+ (Ln = La, Ce, or Pr) produce five isomorphic compounds, which are crystallized in the triclinic crystal system, space group P1, and formulated as [Ln6(H2O)25(MV12O38)(HMV13O38)].nH2O ((1) Ln = La, M = Mn, and n approximately 31; (2) Ln = Ce, M = Mn, and n approximately 29; (3) Ln = Pr, M = Mn, and n approximately 31; (4) Ln = La, M = Ni, and n approximately 28; (5) Ln = Pr, M = Ni, and n approximately 33). These compounds are two-dimensional polymeric structures constructed by hydrated lanthanide cations and two types of heteropoly anions, [MV13O38](7-) and [MV12O38](12-). In contrast to the previous reported 1:13 heteropoly anions, all with disordered structures, [MV13O38](7-) clusters in 1-5 are non-disordered with a distinct mode. The second kind of anionic cluster [MV12O38](12-) with O(h) symmetry, which consists of 13 entire edge-sharing MO(6) (M = V, Mn or Ni) octahedra, has not been reported hitherto. The emergence of the new cluster may be correlated to the six capping lanthanide cations surrounding it with a stabilization effect. In this paper, the syntheses and structures of the five polymeric lanthanide heteropolyvanadates of manganese(IV) and nickel(IV) have been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号