首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this second of a series of two papers, the fire behaviour of halogen-free flame retarded polycarbonate (PC) blends with different impact modifiers was studied. The impact modifiers were acrylonitrile-butadiene-styrene (ABS), a poly(n-butyl acrylate) rubber (PBA) with a poly(methyl methacrylate) (PMMA) shell and two silicone-acrylate rubbers consisting of PBA with different amounts of polydimethylsiloxane (PDMS) and different shell materials (PMMA and styrene-acrylonitrile, SAN). The flame retardant was bisphenol A bis(diphenyl phosphate) (BDP). Flammability was determined by LOI and UL 94. The burning behaviour under forced flaming conditions was studied by cone calorimeter under different external irradiations and by pyrolysis combustion flow calorimeter measurements. The exchange of ABS with the pure acrylate rubber worsened flammability, while similar results were obtained in cone calorimeter measurements. The exchange of ABS with the silicone-acrylate rubbers is promising, particularly with higher amounts of PDMS. In flammability tests strongly enhanced LOI values were obtained and therefore silicone-acrylate rubbers look like promising alternatives for ABS.  相似文献   

2.
Silicone‐based impact modifiers were prepared in a previous study. The modifiers were composed of silicone/acrylic rubber cores and grafted acrylic shells. They improved the toughness of poly(vinyl chloride) (PVC) and poly(methyl methacrylate). The silicone emulsion that was used to produce the silicone‐based impact modifiers was prepared via two routes: emulsion polymerization and bulk polymerization of octamethyltetracyclosiloxane. Many silicone‐based impact modifiers were produced that had different silicone/acrylic rubber characteristics. Through a toughness examination of modified PVC, the best composition of the silicone‐based impact modifiers was obtained, and the silicone content in the rubber composition was 25 wt %. The morphology of the silicone‐based impact modifiers, determined by transmission electron microscopy, was as follows: core and second shell polymers were mainly poly(butyl acrylate), and the first shell polymer was silicone. The silicone‐based impact modifiers were blended with engineering resins such as PVC, polycarbonate (PC), poly(butylene terephthalate) (PBT), and PC/PBT mixtures. The impact strength under standard conditions and after weathering test conditions for blends of the silicone‐based impact modifiers were investigated with respect to two commercially available acrylic and methyl methacrylate/butadiene/styrene impact modifiers. The results showed good weatherability and good toughness under low‐temperature conditions for the silicone‐based impact modifiers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1112–1119, 2004  相似文献   

3.
交联核壳结构PBA/PS和PBA/PMMA纳米微球的制备与应用   总被引:1,自引:0,他引:1  
考察了聚丙烯酸丁酯/聚苯乙烯(PBA/PS)以及聚丙烯酸丁酯/聚甲基丙烯酸甲酯(PBA/PMMA)交联核壳结构纳米高分子微球的制备方法,并对其在尼龙复合材料中的应用进行了初步研究.结果表明,通过交联剂的引入使粒子核层和壳层内部均形成了高度交联的结构,可以限制亲水性较小的聚苯乙烯(PS)壳层向粒子内部迁移的趋势;制备出的微球平均粒径为40~50 nm,粒径分布很窄.采用饥饿态加料方式加入第二单体不仅可以使微球具有较高的产率和凝胶率,而且可以使其具有更理想的核壳结构和更窄的粒径分布.此外,将合成出的PBA/PMMA核壳粒子对尼龙6基体进行复合的结果表明,由于该微球表面与尼龙6基体之间具有较强的界面相互作用且微球具有较大的形变能力,可以在基体中形成良好的分散,在保持材料强度的同时有效地提高了其刚性和韧性.  相似文献   

4.
Electrospray ionization (ESI-MS) and matrix assisted laser desorption-ionization (MALDI-MS) were used to determine the composition (monomer ratios) and structure (end group analysis) relative to 1H NMR spectroscopy and theoretical predictions for three different copolymers: poly(butyl acrylate/vinyl acetate) (PBA/PVAc), poly(methyl methacrylate/vinyl acetate) (PMMA/PVAc) and poly(butyl acrylate/methyl methacrylate) (PBA/PMMA). We found that the ESI results were in excellent agreement with 1H NMR spectroscopy for PBA/PVAc and PBA/PMMA copolymers whereas there was more divergence in the case of PMMA/PVAc. In the case of PBA/PMMA copolymers similar distributions of products were observe by ESI-MS and MALDI-MS with the two major products classes differing by their end-groups. One class has hydrogen and dodecylthio end groups while in the other the dodecylthio has been replaced by alpha-cyanoisopropyl from the initiator. The relative abundance of these distributions as a function of copolymer conversion for a series of reaction conditions was investigated by both ESI and MALDI. MALDI results consistently underestimated (relative to ESI) the butylacrylate monomer ratio in PBA/PMMA and the abundance of co-polymer oligomers terminated by a dodecylthio group from the chain transfer agent.  相似文献   

5.
Thermal decomposition of waste polymethylmethacrylate-acrylonitrile-butadiene-styrene (PMMA-ABS) blend has been carried out using analytical and lab-scale pyrolysis methods in order to identify the substantial components appearing in the liquid product. Additionally decomposition characteristics of the blend have been investigated regarding the possible interrelation between the two components during the pyrolysis. The interactions between PMMA and ABS seem to modify the decomposition characteristics of the ABS, resulting in a lower degradation temperature than that of pure ABS. Moreover the simultaneous decomposition results in recombination of the products yielding new volatile compounds. During batch pyrolysis relatively high amount of gas production was observed, that is in contradiction with the results obtained by analytical pyrolysis and the data found in the literature where pyrolysis of the PMMA as well as the ABS was reported to yield low amount of gas products. The liquid product retrieved from thermal decomposition has been analyzed with respect to the possible utilization as a propellant. Hence aside from the investigation of contained elements and compounds, determination of density, viscosity, research octane number (RON), calorific value, and gaseous emissions has been carried out as well. The relatively high yield (65 wt%), and outstanding compression tolerance (RON = 110.2) observed at the pyrolysis oil make it a feasible fuel admixture.  相似文献   

6.
橡胶的填料问题一直是人们的研究热点,针对炭黑和白炭黑在橡胶生产中存在的污染问题,本文选用成分结构与白炭黑类似的硅藻土来填充各种橡胶。首先对硅藻土进行了改性,并对不同改性剂改性硅藻土用于填充橡胶进行了研究。结果表明2.5份偶联剂Si69的改性效果最佳。通过机械共混法制备了改性硅藻土/橡胶纳米复合材料,通过力学性能测试确定了比较适合硅藻土填充的橡胶是氟橡胶、三元乙丙橡胶和丙烯酸酯橡胶。绿色环保且价格低廉的硅藻土可以替代白炭黑增强填充氟橡胶、三元乙丙橡胶和丙烯酸酯橡胶。  相似文献   

7.
Solid residues of bisphenol A polycarbonate (containing 0.45 wt% poly(tetrafluoroethylene))/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate) (PC/SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) after thermal treatment were investigated by solid-state and liquid-state NMR, focusing on the role and interaction of SiR with the other components of the polymer blend.In PC/SiR/BDP, part of the SiR reacts to an amorphous silicate network rather than being completely released in the gas phase. The silicate network consists of Q4 and Q3 groups formed via intermediate D and T groups. The D groups are formed by a reaction of SiR with bisphenol-A units as well as phenyl groups of PC and BDP. In addition a small amount of silicon diphosphate was observed after thermal treatment at temperatures higher than 810 K. The same decomposition products (without SiP2O7) occur in the solid residues of PC/SiR/BDP/ZnB samples. The formation of intermediate D and T groups occurs earlier, at slightly lower temperatures. Any formation of a borosilicate network was excluded.The results also apply for the fire residues of PC/SiR/BDP and PC/SiR/BDP/ZnB and are thus valuable for understanding the impact of SiR on pyrolysis and flame retardancy mechanisms in the condensed phase during the burning of PC/SiR/BDP blends. SiR was found to influence the pyrolysis and the char formed. Beyond the replacement of highly combustible mechanical modifiers, SiR harbours the potential to enhance flame retardancy.  相似文献   

8.
This paper reports the preparation of cross-linked core-shell poly(butyl acrylate)/polystyrene (PBA/PS) and poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) nanoparticles via seeded emulsion polymerization and their application in nylon-based composites. A highly cross-linked structure was formed in both the cores and the shells by using a cross-linking agent, which could prevent the migration of hydrophobic PS shells to the inside of particles. There were covalent bonds on the interfaces between the cores and the shells of both particles. The average particle sizes were 40–50 nm, and the size distributions were narrow. The kinetics of polymerization was investigated. Well-defined core-shell structure and narrow particle size distribution could be achieved under starved conditions of monomer feeding. Furthermore, PBA/PMMA particles were used to fill nylon 6, good dispersion was obtained because of the strong interfacial interaction between the nanoparticles and the nylon 6 matrix and the good deformation ability of nanoparticles, and the toughness and rigidity of the composites were improved evidently. __________ Translated from Acta Polymerica Sinica, 2005, (6) (in Chinese)  相似文献   

9.
In this work poly(methyl methacrylate) (PMMA) macromonomer is used as a compatibilizing agent in a poly(butyl acrylate) (PBA)/PMMA core/shell latex system. The incorporation of the PMMA macromonomer was achieved by copolymerizing it with BA monomer using miniemulsion polymerization. PBA seed latex was also synthesized without the macromonomer present to compare the compatibilizing effects with the PMMA macromonomer. The second stage methyl methacrylate monomer was added semi-continuously to the PBA seed latexes under monomer-starved conditions. Solid-state 13C-NMR [H]T1ρ relaxation studies were used to determine the effect of PMMA compatibilizer on these PBA/PMMA core/shell latex interphase regions. The thickness of the interphase of the core/shell particles prepared with and without the PMMA macromonomer compatibilizing agent are calculated to be in the range of 15–16 nm and 10–12 nm, respectively. Electron microscopy revealed that the seed latex prepared with the PMMA macromonomer achieved a more uniform coverage with the second stage PMMA polymer as compared to the latex synthesized without the compatibilizing agent present. It is concluded that the PMMA macromonomer is effective in increasing the thickness of the interphase region and also the amount of interfacial PMMA. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The oxidative stability of blends of poly(methyl methacrylate) (PMMA) with four types of rubber, poly(ethylene-stat-propylene-stat-5-methylene-2-norbornene) (EPDM), poly(ethylene-stat-vinyl acetate) (EVA), dicarboxy terminated poly(acrylonitrile-stat-butadiene) (NBR) and poly(1,3-butadiene-stat-styrene) (SBR), has been investigated as models for rubber-toughened PMMA. Chemiluminescence was used to monitor the oxidation of the rubber in the blends, revealing an unexpected accelerating effect of PMMA on the oxidation of all the rubbers investigated. The effect varies according to the type of rubber and the temperature. The thermo-oxidative stability of PMMA has also been found to decrease in the presence of the rubber as proved by thermogravimetry, confirming mutually antagonistic effects of PMMA and rubber in the blend oxidation. On the basis of results from all techniques, including identification of oxidation products by FTIR spectroscopy, a possible mechanism is suggested, involving the formation of mobile radicals in PMMA induced by rubber oxidation. These radicals are suggested to play a crucial role in enhancing rubber phase oxidation.  相似文献   

11.
纳米复合材料具有许多优异的性能,但是由于纳米粒子常常很难以纳米尺寸均匀地分散在基体中,有时即使实现了纳米级分散,在后加工或应用过程中又会发生二次团聚,使得纳米材料的特性不能充分发挥.因此,要获得性能优异的纳米复合材料首先必须解决纳米材料在基体中的均匀、稳定分散问题.  相似文献   

12.
A series of PB-g-SAN impact modifiers with different ratio of PB to SAN ranging from 20.6/79.4 to 91.9/8.1 were synthesized by seeded emulsion polymerization. ABS blends were prepared by blending these PB-g-SAN impact modifiers and SAN resin. The rubber concentration of these ABS blends was kept at a constant value of 15 wt%. The influences of different impact modifier on the mechanical behavior and morphology of ABS blends have been investigated. The dynamic mechanical analysis on ABS blends shows that Tg of the rubbery phase shifts to a lower temperature, (tan δ)max of the rubbery phase increases and then decreases with the increase of PB concentration in PB-g-SAN impact modifier. A uniform dispersion of rubber particles in the matrix can be observed when PB/SAN ratio in PB-g-SAN impact modifier is in the range from 20.6/79.4 to 71.7/28.3. When it exceeds 71.7/28.3, an agglomeration of rubber particles occurs. The mechanical tests indicate that the ABS blend, in which PB/SAN ratio in the impact modifier is 71.7/28.3, has the maximum impact strength and yield strength.  相似文献   

13.
In this paper, the latex interpenetrating polymer network poly(n-butyl acrylate) polystyrene/poly(methyl methacrylate) (PBA/PS/PMMA, or PBSM) was synthesized by microagglomeration and three-stage emulsion polymerization. The initial poly(n-butyl acrylate) latex particle was agglomerated by methacrylic acid residue containing the polymer latex and then encapsulated by PS and PMMA. The polyblend of poly(vinyl chloride) (PVC) and PBSM (PVC/PBSM) was prepared by blending PVC and PBSM. The morphology and properties of the polyblend have been studied. Experimental results have shown that the processability and impact-resistance of PVC can be enhanced considerably by means of blending 6–20 per hundred resin (phr) PBSM. The three-layered latex interpenetrating polymer network is a promising modifier for rigid PVC (RPVC) manufactures.  相似文献   

14.
A series of methyl methacrylate‐butadiene‐styrene (MBS) core–shell impact modifiers were prepared by grafting styrene (St) and methyl methacrylate (MMA) onto polybutadiene (PB) or styrene‐butadiene rubber (SBR) seed latex in emulsion polymerization. All the MBS modifiers were designed to have the same total chemical composition, and Bd/St/MMA equaled 39/31/30, which was a prerequisite for producing transparent blends with poly(MMA)/styrene‐acrylonitrile (PMMA/SAN) matrix copolymers. Under this composition, different ways of arrangement for styrene in MBS led to the different structure of MBS modifier. The concentration of PB or SBR rubber of MBS in PMMA/SAN/MBS blends was kept at a constant value of 15 wt.%. The effects of arrangement of St in MBS on the mechanical and optical properties of PMMA/SAN/MBS blends were investigated. The results indicated that Izod impact strength of PMMMA/SAN/MBS blend with the amount of St grafted on core in MBS was higher than that of blend with the amount of St copolymerized with Bd in core of MBS, while the transparency of blend is opposite. From transmission electron microscopy, it was found that the arrangement of St in MBS influenced the dispersion of blend, which led to different toughness. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The chemical reactions occurring in the thermal treatment of bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) blends have been investigated by nuclear magnetic resonance (NMR), mass spectrometry (MS), size exclusion chromatography (SEC), and thermogravimetry (TG). Our results suggest that in the melt-mixing of PC/PMMA blends, at 230°C, no exchange reactions occur and that only the depolymerization reaction of PMMA has been observed. In the presence of an ester-exchange catalyst (SnOBu2), an exchange reaction was found to occur at 230°C, but no trace of PC/PMMA graft copolymer has been observed. Instead, an exchange reaction between the monomer methyl methacrylate (MMA), generated in the unzipping of PMMA chains, and the carbonate groups of PC has been suggested. This is due to the diffusion of MMA at the interface or even into the PC domains, where it can react with PC producing low molar mass PC oligomers bearing methacrylate and methyl carbonate chain ends and leaving the undecomposed PMMA chains unaffected. The TG curves of PC/PMMA blends prepared by mechanical mixing and by casting from THF show two separated degradation steps corresponding to that of homopolymers. This behavior is different from that of a transparent film of PC/PMMA blend, obtained by solvent casting from DCB/CHCl3, which shows a single degradation step indicating that the degradation rate of PC is increased by the presence of PMMA in the blend. The thermal degradation products obtained by DPMS of this blend consist of methyl methacrylate (MMA), cyclic carbonates arising from the degradation of PMMA and PC, respectively, and a series of open chain bisphenol-A carbonate oligomers with methacrylate and methyl carbonate terminal groups. The presence of the latter compounds suggests a thermally activated exchange reaction occurring above 300°C between MMA and PC. The presence of bisphenol-A carbonate oligomers bearing methyl ether end groups, generated by a thermally activated decarboxylation of the methyl carbonate end groups of PC, has also been observed among the pyrolysis products. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1873–1884, 1998  相似文献   

16.
Reactive polymer blending of poly(β-hydroxybutyrate) (PHB) and its valerate copolymers (PHBV) are reported, following two different methodologies, namely polymerization of rubber inclusions in the preformed matrix or reactive melt blending of preformed polymers. As second phase, poly(butyl acrylate) (PBA) and polycaprolactone (PCL) are used. The results of spectroscopic, thermal, mechanical and morphological analysis indicate the existence of chemical interactions between the blend components. Such interactions are also responsible of a drastic change in the morphology.  相似文献   

17.
INTRODUCTIONSince Milkovich and Chiang[1] developed a method of preparing copolymers with uniform side chains by usingthe macromer technique, the synthesis of copolymers with uniform side chains from different macromers hasbeen studied extensively. Milkovich et al. reported the synthesis of polystyrene macromer through termination ofliving polystyrene anions with methacryloyl chloride and its copolymerization with butyl acrylate to formthermoplastic elastomer[2]. Rempp[3] obtained polyoxy…  相似文献   

18.
This paper describes a method to obtain polymer blends by the absorption of a liquid solution of monomer, initiator, and a crosslinking agent in suspension type porous poly(vinyl chloride) (PVC) particles, forming a dry blend. These PVC/monomer dry blends are reactively polymerized in a twin‐screw extruder to obtain the in situ polymerization in a melt state of various blends: PVC/poly(methyl methacrylate) (PVC/PMMA), PVC/poly(vinyl acetate) (PVC/PVAc), PVC/poly(butyl acrylate) (PVC/PBA) and PVC/poly(ethylhexyl acrylate) (PVC/PEHA). Physical PVC/PMMA blends were produced, and the properties of those blends are compared to reactive blends of similar compositions. Owing to the high polymerization temperature (180°C), the polymers formed in this reactive polymerization process have low molecular weight. These short polymer chains plasticize the PVC phase reducing the melt viscosity, glass transition and the static modulus. Reactive blends of PVC/PMMA and PVC/PVAc are more compatible than the reactive PVC/PBA and PVC/PEHA blends. Reactive PVC/PMMA and PVC/PVAc blends are transparent, form single phase morphology, have single glass transition temperature (Tg), and show mechanical properties that are not inferior than that of neat PVC. Reactive PVC/PBA and PVC/PEHA blends are incompatible and two discrete phases are observed in each blend. However, those blends exhibit single glass transition owing to low content of the dispersed phase particles, which is probably too low to be detected by dynamic mechanical thermal analysis (DMTA) as a separate Tg value. The reactive PVC/PEHA show exceptional high elongation at break (~90%) owing to energy absorption optimized at this dispersed particle size (0.2–0.8 µm). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Ionization of polymers in mass spectrometry is usually achieved by forming metal ion adducts. The metal ion has been shown by Wesdemiotis to often play a spectator role in the collision-induced dissociation (CID) chemistry of these species, wherein they fragment according to a free-radical mechanism similar to that found in their pyrolysis. The result is a predominance of low-mass ions in the CID mass spectrum. We have changed this behavior by generating protonated oligomers in the gas phase by first forming proton-bound complexes of the oligomers with amino acids or peptides by electrospray ionization. These complexes dissociate first by loss of the amino acid/peptide to form protonated oligomers, which then undergo a unique fragmentation chemistry. In this article we discuss the results for poly(methyl methacrylate) (PMMA) and poly(butyl acrylate) (PBA). Initially, protonated PMMA and PBA lose methanol and butanol, respectively, from the side chains of the respective monomers. The resulting PMMA-derived ion then undergoes a series of neutral losses corresponding to 32 and 28 Da, methanol and carbon monoxide. This continues as collision energy increases until a final, carbon-rich backbone ion is formed, which then undergoes a classic hydrocarbon fragmentation pattern. The PBA-derived ions are proposed to fragment by the loss of butylether molecules to form anhydride rings along the oligomer chain. The number of ether molecules lost corresponded to half the number of available side chains in the oligomer. The resulting poly-anhydride ion dissociates by small molecule loss. Mechanisms have been suggested for the fragmentation chemistry of these two classes of oligomers.  相似文献   

20.
The oxidative thermal stability along with the identification of the volatile decomposition products under heating of terpene acrylate homopolymers by using TG/DSC/FTIR/QMS-coupled method was presented. It was found that the decomposition of poly(geranyl acrylate) and poly(neryl acrylate) had quite different course as compared to the decomposition process of poly(citronellyl acrylate) under oxidative conditions. FTIR and QMS analyses confirmed mainly the formation of terpene hydrocarbons, propane, propene, acetic acid, CO, CO2 and H2O as the volatile decomposition products under heating of the hompolymers. The results obtained indicated the complex decomposition process of terpene acrylate homopolymers including the random ester bond scissors, the random main carbon chain scissors, decarboxylation, dehydration and oxidation processes of formed gaseous decomposition products and a residue which led to the full decomposition of homopolymers at ca. 600 °C under oxidative conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号