首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
Combustion-related soot particles were sampled in situ from the stoker system of a 0.5 MW incineration pilot plant (feeding material was wood) at two different heights over the feed bed in the third air supply zone. The collected particles were re-aerosolized by a powder-dispersing unit and analyzed by a single-particle laser desorption/ionization (LDI) time-of-flight mass spectrometer (aerosol-time-of-flight mass spectrometry, ATOFMS). The ATOFMS instrument characterizes particles according to their aerodynamic size (laser velocimetry) and chemical composition (LDI mass spectrometry). Chemical species from the particles are laser desorbed/ionized by 266 nm Nd:YAG laser pulses. ATOFMS results on individual 'real world' particles in general give information on the bulk inorganic composition. Organic compounds, which are of much lower concentrations, commonly are not detectable. However, recent off-line laser microprobe mass spectrometric (LMMS) experiments on bulk soot aerosol samples have emphasized that organic compounds can be desorbed and ionized without fragmentation in LDI experiments from black carbonaceous matrices. This paper reports the successful transfer of the off-line results to on-line analysis of airborne soot particles by ATOFMS. The detection of polycyclic aromatic hydrocarbons from soot particles is addressed in detail. The results are interpreted in the context of the recent LMMS results. Furthermore, their relevance with respect to possible applications in on-line monitoring of combustion processes is discussed.  相似文献   

2.
Polyethylene's inert nature and difficulty to dissolve in conventional solvents at room temperature present special problems for sample preparation and ionization in mass spectrometric analysis. We present a study of ionization behavior of several polyethylene samples with molecular masses up to 4000 Da in laser desorption ionization (LDI) time-of-flight mass spectrometers equipped with a 337 nm laser beam. We demonstrate unequivocally that silver or copper ion attachment to saturated polyethylene can occur in the gas phase during the UV LDI process. In LDI spectra of polyethylene with molecular masses above approximately 1000 Da, low mass ions corresponding to metal-alkene structures are observed in addition to the principal distribution. By interrogating a well-characterized polyethylene sample and a long chain alkane, C94H190, these low mass ions are determined to be the fragmentation products of the intact metal-polyethylene adduct ions. It is further illustrated that fragmentation can be reduced by adding matrix molecules to the sample preparation.  相似文献   

3.
A method of aerosol introduction for matrix-assisted laser desorption/ionization (MALDI) is described. The aerosol particles containing matrix and analyte enter directly into the aerosol time-of-flight mass spectrometer (ATOFMS) at atmospheric pressure. The scattered light signals from the aerosol particles are collected by a photomultiplier tube (PMT) and are passed on to an external electronic timing circuit, which determines particle size and is used to trigger a 266 nm pulsed Nd:YAG laser. The aerosol MALDI mass spectra and aerodynamic diameter of single particles can be obtained in real-time. Compared with other methods of liquid sample introduction, this method realizes detection of single particles and, more importantly, the sample consumption is lower. The effects of matrix-to-analyte ratio and laser pulse energy on analyte ion yield are examined. The optimal matrix-to-analyte ratio and laser energy are 50-110:1 and 200-400 μJ respectively.  相似文献   

4.
利用激光解吸附电离飞行时间质谱技术获得了若干已知化学成分的气溶胶粒子的飞行时间质谱,分析标识了各类气溶胶粒子的特征离子谱峰,并对一些特征峰的形成机理进行了探讨。在此基础上,对烟花火药以及纸张燃烧产生的烟气气溶胶粒子进行了实时在线测量,通过对质谱图的分析,获得了有关此两类燃烧过程产生的烟气气溶胶单粒子的化学组成信息。  相似文献   

5.
A major factor limiting on-line single particle mass spectrometry techniques from becoming more quantitative is the large shot-to-shot variability in ion intensities observed in the laser desorption/ionization (LDI) mass spectra.1,2 In previous work, lab-generated particles showed fluctuations of up to 152% in the absolute ion intensities in averaged spectra of 200-300 'identical' particles.2 Most of these fluctuations were attributed to inhomogeneities in the laser beam profile, leading to significant differences in the power each particle encountered depending on the position in the LDI laser beam where it underwent analysis. The goal of the work presented herein is to determine whether a fiber optic actually reduces the observed variability in single particle LDI mass spectral data. Initial results are presented for individual single component organic particles composed of 2,4-dihydroxybenzoic acid (2,4-DHB) analyzed using a low-power flat-top laser beam profile created by sending an ultraviolet (266 nm) DI laser through a fiber optic. Relative standard deviations of the total ion intensities for peaks in individual spectra are reduced to 31%. Single particle spectra, compared with and without laser homogenization at the same nominal laser fluence, show a marked enhancement. Specifically, the ion signal patterns of the 2,4-DHB particle spectra obtained using a homogenous LDI beam look identical to one another (i.e. only one particle type was produced with a commonly used neural network grouping algorithm), whereas without beam homogenization 25 different particle types (based on ion intensity patterns) were obtained. Future publications will explore more particle types and matrices but the initial results described herein are quite encouraging.  相似文献   

6.
Matrix-assisted laser desorption/ionization (MALDI) mass spectra were obtained from single biological aerosol particles using an aerosol time-of-flight mass spectrometer (ATOFMS). The inlet to the ATOFMS was coupled with an evaporation/condensation flow cell that allowed the aerosol to be coated with matrix material as the sampled stream entered the spectrometer. Mass spectra were generated from aerosol composed either of gramicidin-S or erythromycin, two small biological molecules, or from aerosolised spores of Bacillus subtilis var niger. Three different matrices were used: 3-nitrobenzyl alcohol, picolinic acid and sinapinic acid. A spectrum of gramicidin-S was generated from approximately 250 attomoles of material using a molar ratio of 3-nitrobenzyl alcohol to analyte of approximately 20:1. A single peak, located at 1224 Da, was obtained from the bacterial spores. The washing liquid and extract solution from the spores were analyzed using electrospray mass spectrometry and subsequent MS/MS product ion experiments. This independent analysis suggests that the measured species represents part of the B. subtilis peptidoglycan. The on-line addition of matrix allows quasi-real-time chemical analysis of individual, aerodynamically sized particles, with an overall system residence time of less than 5 seconds. These results suggest that a MALDI-ATOFMS can provide nearly real-time identification of biological aerosols. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Post-source decay (PSD) is a valuable tool for providing structural information from large molecules by time-of-flight mass spectrometry (TOFMS). We used PSD to obtain this type of data from small molecules in the laser desorption/ionization (LDI) study of diesel engine exhaust particles. As the original nitrogen laser (lambda = 337 nm, E = 3.5 eV/photon) of our TOF mass spectrometer does not yield sufficient energy to ionize polycyclic aromatic hydrocarbons (PAHs), a second laser with a shorter wavelength has been coupled to the instrument. The fourth harmonic of a Nd:YAG laser (lambda = 266 nm, 4.6 eV/photon) has been chosen to achieve two-photon single-step desorption/ionization of PAHs. The PSD fragmentation of functionalized, alkylated and sulfur PAHs is discussed. Diesel engine exhaust particles are also studied as an example of a real complex sample. This technique is presented herein as a way to identify small molecules in environmental samples. Information provided by LDI-PSD-TOFMS can be a way to distinguish pollutants with very close molecular weights even if the resolving power of a TOF mass spectrometer is not sufficient.  相似文献   

8.
Matrix-assisted laser desorption/ionization (MALDI) was used for the on-line analysis of single particles. An aerosol was generated at atmospheric pressure and particles were introduced into a time-of-flight (TOF) mass spectrometer through a single-stage differentially pumped capillary inlet. Prior to entering the mass spectrometer, a matrix was added to the particles using a heated saturator and condenser. A liquid matrix, 3-nitrobenzyl alcohol (NBA), and a solid matrix, picolinic acid (PA), were used. Particles were ablated with a 351 nm excimer laser and the resulting ions were mass-separated in a two-stage reflectron TOF mass spectrometer. Aerosol particles containing the biomolecules erythromycin and gramicidin S were analyzed with and without the matrix addition step. The addition of NBA to the particles resulted in mass spectra that contained an intact molecular ion mass peak. In contrast, PA-coated particles did not yield molecular ion peaks from matrix-coated particles.  相似文献   

9.
Low-resolution electron ionization mass spectra recorded on various types of mass spectrometers (time-of-flight, quadrupole, and three-dimensional ion trap) were compared. A model mixture of 10 organic compounds (MW < 200 Da) was analyzed by gas chromatography-mass spectrometry. Pure mass spectra of analytes were extracted using the AMDIS software. The best repeatability was achieved for the time-of-flight mass spectrometer. The mass spectra recorded by a quadrupole and a time-of-flight mass spectrometer were quite similar. In the case of these instruments, library search using a commercial mass spectral data base (NIST’05) gave satisfactory result for each analyte (rank 1 or 2 in the “hit list”; Match > 900). In some cases, the mass spectra of model compounds recorded by the ion trap mass spectrometer differed in intensity of certain mass spectral peaks (but not in the set of peaks) from the mass spectra presented in the library and from the experimental mass spectra recorded by the time-of-flight and quadrupole instruments.  相似文献   

10.
Details of the optimization of the collision-induced dissociation (CID) process, using a collision cell on a matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer, are described using poly(ethylene glycol) 1000 (PEG 1000) as a model analyte. The effects of collision gas identity (helium, air, and argon), as well as collision gas pressure, on the resulting MS/MS data were investigated. With PEG 1000, helium was found to give the best results with respect to signal-to-noise (S/N) ratio. The optimum pressure for each gas was found to be in the range where the precursor ion signal was attenuated to approximately 30-50% for helium and 40-60% for argon. The effect of cation choice (Li, Na, and K) on the CID of PEG was also studied. CID spectra were produced for each, but PEG cationized with lithium was found to produce the spectra with the highest S/N ratio. The MALDI-TOF CID spectra that were generated for PEG were compared with the high-energy and low-energy MS/MS spectra obtained from a sector mass spectrometer and from a triple quadrupole mass spectrometer, respectively. The results observed for PEG confirm that CID on a MALDI-TOF mass spectrometer is a high-energy MS/MS technique.  相似文献   

11.
An aerodynamic lens has been used to introduce polystyrene nanoparticles into an apparatus that combines laser vaporisation with mass spectrometric measurements of ion intensity. The particles have a mean diameter of 129 nm and are sterically-stabilised with poly(ethylene glycol) which coats the surface to a depth of approximately 5 nm. Measurements have been made at wavelengths of 266, 355, and 523 nm, and over a range of laser powers. The results provide clear evidence that depth profiling can be achieved by changing the wavelength of the ablating radiation, but that changes in power at a single wavelength have little influence on the range of ions observed. At 523 nm the mass spectra are predominantly derived from surface-bound material, whilst at 266 nm the dominant contribution is from ions related to the polystyrene core of the particles. It is proposed that these differences in behaviour can be equated with existing models of the laser ablation process.  相似文献   

12.
A new atmospheric pressure (AP) infrared (IR) matrix-assisted laser desorption/ionization (MALDI) ion source was developed and interfaced with a Thermo Finnigan LCQ ion trap mass spectrometer. The source utilized a miniature all-solid-state optical parametric oscillator (OPO)-based IR laser system tunable in the lambda = 1.5-4 microm spectral range and a nitrogen ultraviolet (UV) laser (lambda = 337 nm) for use in comparative studies. The system demonstrated comparable performance at 3 microm and 337 nm wavelengths if UV matrices were used. However, AP IR-MALDI using a 3 microm wavelength showed good performance with a much broader choice of matrices including glycerol and liquid water. AP IR-MALDI mass spectra of peptides in the mass range up to 2000 Da were obtained directly from aqueous solutions at atmospheric conditions for the first time. A potential use of the new AP IR-MALDI ion source includes direct MS analysis of biological cells and tissues in a normal atmospheric environment as well as on-line coupling of mass spectrometers with liquid separation techniques.  相似文献   

13.
A real-time analysis of secondary organic aerosol (SOA) particles formed from cyclohexene ozonolysis in a smog chamber was performed using a laser-ionization single-particle aerosol mass spectrometer (LISPA-MS). The instrument obtains both size and chemical compositions of individual aerosol particles with a high time-resolution (approximately 2 s at the maximum). Both positive and negative-ion mass spectra are obtained. Standard particles generated from dicarboxylic acid solutions using an atomizer were also analyzed. For both standard and SOA particles, the negative-ion mass spectra provided information about the molecular weights of the organic compounds in the particles, since the intense ions in the negative-ion mass spectra are mainly attributable to the molecular-related ions [M-H]-. It was demonstrated that the real-time single-particle analysis of SOA particles by the LISPA-MS technique can reveal the formation and transformation processes of SOA particle in smog chambers.  相似文献   

14.
Ambient aerosol particles affect both the earth's climate and human health. Both effects depend on the chemical composition of the particles including the binding state of specific elements. Modern on-line aerosol mass spectrometry is capable of measuring aerosol composition with high temporal resolution, avoiding artifacts often introduced by classical off-line methods. The two most common types of on-line aerosol mass spectrometers, laser desorption/ionization mass spectrometers (LDI-MS) and thermal desorption electron impact ionization mass spectrometers (TD-EI-MS) provide reliable information on the most common ambient inorganic and organic aerosol species with high temporal resolution. However, for less common aerosol species identification with both types of instrument is frequently associated with large uncertainties. Here, we provide an overview of the element speciation capabilities of current on-line aerosol mass spectrometry for both carbonaceous and non-carbon-containing aerosol species. We describe limitations and other issues for this type of on-line aerosol analysis.  相似文献   

15.
在自制的烟雾腔内,研究羟基自由基(OH·)启动的乙苯的光氧化反应和一系列后续反应,产生了二次有机气溶胶. 采用空气动力学直径粒谱分析仪分析了气溶胶粒子的尺寸分布;并用自制的气溶胶飞行时间质谱仪快速、实时地测量了单个二次有机气溶胶粒子的分子组分. 初步探讨了这些组分的可能反应机理.  相似文献   

16.
Several electrospray mass spectrometry (ESI-MS) techniques have been described during the past years to enable the characterization work of large poly(ethylene glycol)s (PEGs) and PEGylated proteins. The proton transfer reaction ESI-MS method utilizes amines to charge reduce the electrospray envelope of PEGs, hence PEG molecules are aminated instead of protonated. This method simplifies the mass spectrum of large PEGs, and enables the interpretation of the charge state of the observable envelopes (R ≥ 3,000 (FWHM) measured at the (M + 6H)6+ ion from 40 K PEG compound 7,324.19). Hence, deconvolution of the MS data can be performed and relative molecular masses of the individual chain lengths of the PEGs can be calculated. However, as the poly-dispersity of PEGs may vary from batch to batch and from sample to sample, it was of interest to examine if the method could distinguish between these kinds of different material. Therefore, sample materials of each intermediate obtained at five synthetic steps during synthesis of a 40 kDa PEG molecule were collected. These four intermediates, starting material and the target molecule were examined by 1H-NMR spectroscopy and ESI-MS using a proton stripping base. The study revealed that the charge-stripping ESI-MS method is able to differentiate between even small changes in the structure of the polymeric molecules only when the analysis is assisted by 1H-NMR spectroscopy. A proper characterization of polymer molecules requires besides relative molecular mass, also poly-dispersity and end-group characterization. No end-group information is obtained based on MS data. Examination of the PEG polymers by 1H-NMR spectroscopy provides the needed information. In addition, the 1H-NMR spectra clearly distinguishes the examined polymers.  相似文献   

17.
18.
Polyethylene glycol (PEG) compounds and mixtures have many properties that make them suitable for thermal applications in buildings, such as having high heat of fusion, phase change repeatability, chemical stability, non-corrosive behavior, and low-cost. In this study, we developed a number of PU rigid foams incorporated with three types of PEGs, as new insulation materials provided with an enhanced thermal capacity, and sought their suitability for various applications such as layer of floor and ceiling coverings in constructions, insulations in controlled temperature transportation packaging, inner coverings of automobile seats, etc. In order to investigate the thermal properties of PEG-containing PU foams, differential scanning calorimeter (DSC) tests were conducted first. Then, a two-layer concrete–PU foam system was designed in the laboratory conditions to examine the insulation performances via using a computer-aided thermal measurement setup which was sensitive to the simulated environmental temperature changes. The PU-PEG composites produced here can be helpful for the design of thermal insulators. PUI, including 44% PEG 600, exhibited fairly efficient thermal regulation under moderate ambient temperature conditions, whereas PUII (49% PEG 1000) is suitable for temperature control in both mild and hot surroundings. PUIII, containing 53% PEG 1500, showed suitable heat storage and thermal stability characteristics. PUIV, containing 38% PEG 600/PEG 1000/PEG 1500, also confirmed good thermal and durability characteristics. The blend of three PEGs is suitable for preventing discontinuous thermal regulation when the external temperature increases or decreases. PU foams containing PEGs can be assumed to be leak-resistant, which is promising for their industrial applications.  相似文献   

19.
A study of the fast-atom bombardment tandem mass spectrometry behavior of a number of ethylene glycol polymers (PEGs) has been carried out. Both linear (hydroxyl, amino, and/or alkyl end groups) and cyclic (crown ether) polymers were studied. One of the materials is a block copolymer of ethylene and propylene oxides. Collisional activation was carried out in the collision octapole of a BEoQ hybrid mass spectrometer at a translational energy of 50 eV, with collision gas air. For the linear polymers, the most intense product ions are lithiated, linear polyglycol oligomers. These ions are formed via internal hydrogen transfer reactions that are facilitated (charge-induced) by lithium. This series of product ions allows for the observation of consecutive losses of monomer units from the chain end; this is useful to determine the sequence of monomers in a copolymer. The most abundant product ions from cyclic PEGs are lithiated radical cations. An especially interesting finding in this work is the preferential loss of two internal ethylene oxide (EO) units (dioxane, 88 u) from some [M + Li]+ precursors. Factors that influence this loss include (a) the sequence length of EO repeat units in the oligomer and (b) the identity of the end group(s) on the oligomer. It is proposed that this elimination of dioxane involves a six-membered ring intermediate; this decomposition reaction is believed to be a lithium-mediated (charge-induced) rearrangement. (J Am Soc Mass Spectrom 1994, 5, 1072-1080)  相似文献   

20.
A time-of-flight mass spectrometer in reflectron configuration has been used for the real-time detection of combustion products. The products of a premixed laminar C2H4/O2 flame at atmospheric pressure were sampled along its axis, diluted with inert gas and carried to the ion source as a molecular beam under minimal perturbation. Electron ionization and different optical ionization sources are compared. Photoionization was achieved with laser radiation from a Nd:YAG nanosecond pulsed laser at two different wavelengths in the UV range (266 and 355 nm). The mass spectra obtained using laser wavelength of 355 nm and electron ionization present a series of ions regularly spaced by 18 m/z units up to m/z 2000. This series allowed precise calibration of the instrument for compounds of high molecular weight. Information on the chemical nature of the analyzed species has been obtained by comparing mass spectra produced with different ionization methods. In order to better understand the growth mechanisms, polycyclic aromatic hydrocarbon sequences have been analyzed by fast Fourier transform of the mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号