首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an earlier paper, we proposed a modified fuzzy programming method to handle higher level multi-level decentralized programming problems (ML(D)PPs). Here we present a simple and practical method to solve the same. This method overcomes the subjectivity inherent in choosing the tolerance values and the membership functions. We consider a linear ML(D)PP and apply linear programming (LP) for the optimization of the system in a supervised search procedure, supervised by the higher level decision maker (DM). The higher level DM provides the preferred values of the decision variables under his control to enable the lower level DM to search for his optimum in a narrower feasible space. The basic idea is to reduce the feasible space of a decision variable at each level until a satisfactory point is sought at the last level.  相似文献   

2.
《Optimization》2012,61(8):1247-1258
In this article, the standard primal and dual linear semi-infinite programming (DLSIP) problems are reformulated as linear programming (LP) problems over cones. Therefore, the dual formulation via the minimal cone approach, which results in zero duality gap for the primal–dual pair for LP problems over cones, can be applied to linear semi-infinite programming (LSIP) problems. Results on the geometry of the set of the feasible solutions for the primal LSIP problem and the optimality criteria for the DLSIP problem are also discussed.  相似文献   

3.
Privacy-preserving linear programming   总被引:1,自引:0,他引:1  
We propose a privacy-preserving formulation of a linear program whose constraint matrix is partitioned into groups of columns where each group of columns and its corresponding cost coefficient vector are owned by a distinct entity. Each entity is unwilling to share or make public its column group or cost coefficient vector. By employing a random matrix transformation we construct a linear program based on the privately held data without revealing that data or making it public. The privacy-preserving transformed linear program has the same minimum value as the original linear program. Component groups of the solution of the transformed problem can be decoded and made public only by the original group that owns the corresponding columns of the constraint matrix and can be combined to give an exact solution vector of the original linear program.  相似文献   

4.
This paper proposes solution approaches to the belief linear programming (BLP). The BLP problem is an uncertain linear program where uncertainty is expressed by belief functions. The theory of belief function provides an uncertainty measure that takes into account the ignorance about the occurrence of single states of nature. This is the case of many decision situations as in medical diagnosis, mechanical design optimization and investigation problems. We extend stochastic programming approaches, namely the chance constrained approach and the recourse approach to obtain a certainty equivalent program. A generic solution strategy for the resulting certainty equivalent is presented.  相似文献   

5.
6.
An enhanced-interval linear programming (EILP) model and its solution algorithm have been developed that incorporate enhanced-interval uncertainty (e.g., A±, B± and C±) in a linear optimization framework. As a new extension of linear programming, the EILP model has the following advantages. Its solution space is absolutely feasible compared to that of interval linear programming (ILP), which helps to achieve insight into the expected-value-oriented trade-off between system benefits and risks of constraint violations. The degree of uncertainty of its enhanced-interval objective function (EIOF) would be lower than that of ILP model when the solution space is absolutely feasible, and the EIOF’s expected value could be used as a criterion for generating the appropriate alternatives, which help decision-makers obtain non-extreme decisions. Moreover, because it can be decomposed into two submodels, EILP’s computational requirement is lower than that of stochastic and fuzzy LP models. The results of a numeric example further indicated the feasibility and effectiveness of EILP model. In addition, EI nonlinear programming models, hybrid stochastic or fuzzy EILP models as well as risk-based trade-off analysis for EI uncertainty within decision process can be further developed to improve its applicability.  相似文献   

7.
The Bottleneck Linear Programming problem (BLP) is to maximizex 0 = max j c j ,x j > 0 subject toAx = b, x 0. A relationship between the BLP and a problem solvable by a greedy algorithm is established. Two algorithms for the BLP are developed and computational experience is reported.  相似文献   

8.
9.
Recently, Fang proposed approximating a linear program in the Karmarkar standard form by adding an entropic barrier function to the objective function and derived an unconstrained dual concave program. We present in this note a necessary and sufficient condition for the existence of a dual optimal solution to the perturbed problem. In addition, a sharp upper bound of error estimation in this approximation scheme is provided.  相似文献   

10.
We present some complexity results on checking necessary efficiency in interval multiobjective linear programming. Supposing that objective function coefficients perturb within prescribed intervals, a feasible point x* is called necessarily efficient if it is efficient for all instances of interval data. We show that the problem of checking necessary efficiency is co-NP-complete even for the case of only one objective. Provided that x* is a non-degenerate basic solution, the problem is polynomially solvable for one objective, but remains co-NP-hard in the general case. Some open problems are mentioned at the end of the paper.  相似文献   

11.
Presolving in linear programming   总被引:8,自引:0,他引:8  
Most modern linear programming solvers analyze the LP problem before submitting it to optimization. Some examples are the solvers WHIZARD (Tomlin and Welch, 1983), OB1 (Lustig et al., 1994), OSL (Forrest and Tomlin, 1992), Sciconic (1990) and CPLEX (Bixby, 1994). The purpose of the presolve phase is to reduce the problem size and to discover whether the problem is unbounded or infeasible.In this paper we present a comprehensive survey of presolve methods. Moreover, we discuss the restoration procedure in detail, i.e., the procedure that undoes the presolve.Computational results on the NETLIB problems (Gay, 1985) are reported to illustrate the efficiency of the presolve methods.This author was supported by a Danish SNF Research studentship.  相似文献   

12.
In this paper, we consider the following minimax linear programming problem: min z = max1 ≤ jn{CjXj}, subject to Ax = g, x ≥ 0. It is well known that this problem can be transformed into a linear program by introducing n additional constraints. We note that these additional constraints can be considered implicitly by treating them as parametric upper bounds. Based on this approach we develop two algorithms: a parametric algorithm and a primal—dual algorithm. The parametric algorithm solves a linear programming problem with parametric upper bounds and the primal—dual algorithm solves a sequence of related dual feasible linear programming problems. Computation results are also presented, which indicate that both the algorithms are substantially faster than the simplex algorithm applied to the enlarged linear programming problem.  相似文献   

13.
The complexity of linear programming is discussed in the “integer” and “real number” models of computation. Even though the integer model is widely used in theoretical computer science, the real number model is more useful for estimating an algorithm's running time in actual computation.Although the ellipsoid algorithm is a polynomial-time algorithm in the integer model, we prove that it has unbounded complexity in the real number model. We conjecture that there exists no polynomial-time algorithm for the linear inequalities problem in the real number model. We also conjecture that linear inequalities are strictly harder than linear equalities in all “reasonable” models of computation.  相似文献   

14.
15.
Bicriteria linear fractional programming   总被引:4,自引:0,他引:4  
As a step toward the investigation of the multicriteria linear fractional program, this paper provides a thorough analysis of the bicriteria case. It is shown that the set of efficient points is a finite union of linearly constrained sets and the efficient frontier is the image of a finite number of connected line segments of efficient points. A simple algorithm using only one-dimensional parametric linear programming techniques is developed to evaluate the efficient frontier.This research was partially supported by NRC Research Grant No. A4743. The authors wish to thank two anonymous referees for their helpful comments on an earlier draft of this paper.  相似文献   

16.
Fuzzy multi-objective and fuzzy Goal Programming are discussed in connection with several membership functions which are used to transform the original problem into three equivalent linear programming problems. Existence and uniqueness theorems are given. Fuzzy duality is presented, and an extension of the initial fuzzy problem arises immediately from it.  相似文献   

17.
The major interest of this paper is to show that, at least in theory, a pair of primal and dual -optimal solutions to a general linear program in Karmarkar's standard form can be obtained by solving an unconstrained convex program. Hence unconstrained convex optimization methods are suggested to be carefully reviewed for this purpose.  相似文献   

18.
In a multi-objective linear fractional programming problem (MOLFPP), it is often useful to check the efficiency of a given feasible solution, and if the solution is efficient, it is useful to check strong or weak efficiency. In this paper, by applying a geometrical interpretation, a linear programming approach is achieved to test weak efficiency. Also, in order to test strong efficiency for a given weakly efficient point, a linear programming approach is constructed.  相似文献   

19.
Bilevel programming involves two optimization problems where the constraint region of the first level problem is implicitly determined by another optimization problem. In this paper we consider the bilevel linear/linear fractional programming problem in which the objective function of the first level is linear, the objective function of the second level is linear fractional and the feasible region is a polyhedron. For this problem we prove that an optimal solution can be found which is an extreme point of the polyhedron. Moreover, taking into account the relationship between feasible solutions to the problem and bases of the technological coefficient submatrix associated to variables of the second level, an enumerative algorithm is proposed that finds a global optimum to the problem.  相似文献   

20.
Safe bounds in linear and mixed-integer linear programming   总被引:1,自引:0,他引:1  
Current mixed-integer linear programming solvers are based on linear programming routines that use floating-point arithmetic. Occasionally, this leads to wrong solutions, even for problems where all coefficients and all solution components are small integers. An example is given where many state-of-the-art MILP solvers fail. It is then shown how, using directed rounding and interval arithmetic, cheap pre- and postprocessing of the linear programs arising in a branch-and-cut framework can guarantee that no solution is lost, at least for mixed-integer programs in which all variables can be bounded rigorously by bounds of reasonable size. Mathematics Subject Classification (2000):primary 90C11, secondary 65G20  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号