首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary On-line precolumn sample handling is used to enrich polar aniline derivatives in order to preconcentrate them prior to their separation. Liquid-solid extraction is possible with a cation-exchanger precolumn after acidification of water samples at pH 3 and a clean-up in order to remove the high amounts of inorganic cations present in natural samples. Since inorganic removal cannot be total, overloading of the ion exchanger occurs rapidly. The volume which can be directly percolated through the cation-exchanger precolumn cannot exceed 30 ml and the amount preconcentrated is not sufficient for a determination at the 100 ppt level. A two-step preconcentration procedure is carried out in order to increase the sample volume: the direct percolation of samples through the cation-exchanger precolumn is avoided and the clean-up step is no longer necessary. Aniline derivatives are preconcentrated in their neutral form at pH 7 by a 9-cm long column packed with the copolymer-based PRP-1 sorbent; then, a small volume of water-methanol at pH 2 allows the cationic compounds alone to be desorbed from the PRP-1 column in their protonated form and to be transferred to a 1-cm long cation-exchanger precolumn. This precolumn is then coupled to an analytical C18 column and its content on-line analysed by an acetonitrile gradient. The PRP-1 column acts as a powerful filter to many neutral interferents and aniline derivatives can be thus determined from 150-ml drinking water samples with 10–50 ppt UV detection limits.Dedicated to Roland W. Frei  相似文献   

2.
Summary An on-line procedure is described for the trace-level determination of mono-, di- and methyl-chloroanilines in aqueous samples using selective preconcentration with a cation-exchanger and liquid chromatography with UV and electrochemical detection. Because direct percolation through a cation-exchanger has to be avoided owing to the high content of inorganic anions present in natural waters, a two-step on-line preconcentration was carried out: chloroanilines were first trapped on a precolumn packed with an apolar polymeric sorbent (PRP-1) in their neutral form. Then the PRP-1 precolumn was coupled in series with a second precolumn containing cation exchange material. The chloroanilines were removed from the first precolumn with 3 mL of deionised water: acetonitrile (31) at pH 1 and retained by the cation exchange column. The contents of the cation exchange column were finally desorbed onto the analytical column and eluted with a water: acetonitrile gradient. The combination of selective trace enrichment and sensitive electrochemical detection allows the simultaneous determination of chloroanilines from 150 mL of river water samples with detection limits below 30 ng/l. Identification is confirmed by the selective preconcentration and the two detection modes.  相似文献   

3.
Summary Two packing materials, C18 and PLRP-S, are studied for on-line trace enrichment of phenolic compounds in water. Various precolumns of different internal diameter are also tested and the addition of an ion-pair reagent to increase retention and thus, breakthrough volumes of phenolic compounds, is studied. Best results are obtained when a PLRP-S precolumn is coupled on-line with a C18 analytical column and DAD detector. Addition of TBA considerably increases breakthrough volumes. In contrast, when a C18 precolumn is used, breakthrough volumes are lower and it is impossible to determine TCP and PCP, under the experimental conditions used, because of interference of other nonpolar compounds in the samples. The performance of the system is evaluated with river and tap water and the preconcentration of 10 ml of sample in a PLRP-S precolumn involves a linear range between 1 g 1–1 and 20 l–1 and limits of determination between 0.5 g l–1 and 1 g l–1 are obtained.  相似文献   

4.
Abstract

The stability of parathion-methyl, methiocarb, DDT and 2,4-D, adsorbed on the polymeric PLRP-S phase packed in small stainless steel precolumns was examined, with a view to propose the use of these precolumns as alternative means for the transport of water samples. First, water samples spiked with the studied pesticide at low μg/l concentration levels were extracted and preconcentrated in the precolumns, using appropriate conditions for a total recovery. Then, the precolumns were stored at room temperature (15—20°C) or at 35°C for different time periods. At the end of the respective period each precolumn was coupled to an HPLC column via a switching valve and was on-line analyzed by reversed phase chromatography with UV detection. The four pesticide recoveries after one week in the precolumn at room temperature were higher than 90%. The same was true at 35°C except for DDT, which suffered a 30% degradation in one week. Further studies showed that DDT and parathion-methyl were stable at least for five weeks in precolumns stored at room temperature. Methiocarb also was stable for this period but storing the precolumns at 4°C.  相似文献   

5.
Abstract

A HPLC method has been developed for trace analysis of chlorophenols in the 0.2–2 ppb range from spiked water samples. Simple liquid-liquid extraction followed by on-line preconcentration of total mono- and dichlorophenols has been performed using a divinylbenzene-styrene copolymeric sorbent (PRP1) as packing material for the precolumn. The chlorophenols have been eluted from the precolumn on an analytical column (5μm LiChrosorb RP-18, 12.5 cm × 4 mm) by use of a switching valve system followed by separation. Detection was carried out with an electrochemical detector. The linearity of the detector response has been proved over two orders of magnitude. The detection limit of chlorophenols by means of the electrochemical method is in the lower picogram range. The recoveries of the isomeric chlorophenols from spiked river water samples having initial concentrations of 2ppb are usually 70–90%. The procedure has been applied to drinking water and river water.  相似文献   

6.
The use of porous graphitic carbon (PGC) was investigated for the trace enrichment and the on-line liquid chromatographic separation of polar phenolic compounds (phenol, di- and trihydroxybenzenes, aminophenols, etc.) from aqueous samples. Comparison between retentions obtained with PGC and with the copolymer-based sorbent PRP-1 showed similar variations of the capacity factors with the mobile phase composition, but an inverse retention order. The capacity factor of a very polar analyte, such as 1,3,5-trihydroxybenzene (phloroglucinol), is 1000 in pure water, whereas this analyte is not retained by C18-silica and is poorly retained by PRP-1 (k′ = 3 in water). A precolumn packed with PGC can be coupled to a PGC analytical column for simple separation in the reversed-phase mode. This methodology has been applied to the direct determination of pyrocatechol, resorcinol and phloroglucinol below the 0.1 μg/1 level in a 50-ml sample.  相似文献   

7.
The suitability of Empore-activated carbon disks (EACD), Envi-Carb graphitized carbon black (GCB) and CPP-50 graphitized carbon for the trace enrichment of polar pesticides from water samples was studied by means of off-line and on-line solid-phase extraction (SPE). In the off-line procedure, 0.5-2 1 samples spiked with a test mixture of oxamyl, methomyl and aldicarb sulfoxide were enriched on EnviCarb SPE cartridges or 47 mm diameter EACD and eluted with dichloromethane-methanol. After evaporation, a sample was injected onto a C18-bonded silica column and analysed by liquid chromatography with ultraviolet (LC-UV) detection. EACD performed better than EnviCarb cartridges in terms of breakthrough volumes (>2 1 for all test analytes), reproducibility (R.S.D. of recoveries, 4–8%, n=3) and smapling speed (100 ml/min); detection limits in drinking water were 0.05–0.16 μg/l. In the on-line experiments, 4.6 mm diameter pieces cut from original EACD and stacked onto each other in a 9 mm long precolumn, and EnviCarb and CPP-50 packed in 10×2.0 mm I.D. precolumn, were tested, and 50–200 ml spiked water samples were preconcentrated. Because of the peak broadening caused by the strong sorption of the analytes on carbon, the carbon-packed precolumns were eluted by a separate stream of 0.1 ml/min acetonitrile which was mixed with the gradient LC eluent in front of the C18 analytical column. The final on-line procedure was also applied for the less polar propoxur, carbaryl and methiocarb. EnviCarb could not be used due to its poor pressure resistance. CPP-50 provided less peak broadening than EACD: peak widths were 0.1–0.3 min and R.S.D. of peak heights 4–14% (n = 3). In terms of analyte trapping efficiency on-line SPE-LC-UV with a CPP-50 precolumn also showed better performance than when Bondesil C18/OH or polymeric PLRP-S was used, but chromatographic resolution was similar. With the CPP-50-based system, detection limits of the test compounds were 0.05–1 μg/l in surface water.  相似文献   

8.
A pyrrole-based conductive polymer was prepared and applied as new sorbent for on-line solid-phase extraction (SPE) of phenol and chlorophenols from water samples. Polypyrrole (PPy) was synthesized by chemical oxidation of the monomer in non-aqueous solution. The efficiency of this polymer for extraction of phenol and chlorophenols was evaluated using 35 mg of PPy as the sorbent in an on-line SPE system coupled to reversed-phase liquid chromatography with UV detection. The mobile phase were mixture of phosphate buffer-acetonitrile and compounds were eluted by the mobile phase using a six-port switching valve. High volumes of water, up to 160 ml, could be preconcentrated without the loss of phenols, except for the more polar ones. The R.S.D. for a river water sample spiked with phenol and chlorophenols at sub-ppb level was lower than 7% (n=5) and detection limits of 15-100 and 35-150 ng l−1 for tap and river water were obtained, respectively.  相似文献   

9.
A novel methodology based on column switching LC-MS, using restricted access material (RAM), for an integrated sample clean-up and analysis of endocrine disrupting compounds in sediment samples is described. The use of RAM precolumns, that combines size exclusion and reversed-phase retention mechanisms, enables fast on-line clean-up of sediment extracts and sensitive determination of alkylphenolic compounds, bisphenol A and steroid sex hormones at low ppb level (LODs=0.5-5 ng/g). Different LiChrospher ADS RAM precolumns (Merck, Germany) with C4, C8 and C18, respectively, modification of inner pore surface were tested. ADS C4 precolumns gave the best results in terms of recovery, selectivity and sensitivity, eliminating efficiently matrix components and consequently reducing ion suppression effects. Except for the most polar compounds, all compounds exhibit complete recovery with RSD from 0.87 to 15%. A complete analysis, including efficient pressurized liquid extraction (PLE) of target compounds, on-line clean-up, chromatographic separation and MS detection takes approximately 2 h, which is a significant improvement in comparison to the methods reported previously.  相似文献   

10.
A high-performance liquid chromatography method for the determination of linear alkylbenzenesulphonates (LASs) in river waters has been developed. The ppb levels of LASs can be determined by reversed-phase high-performance liquid chromatography with ultraviolet detection after on-line anion-exchange concentration and successive injection. LASs were quantitatively concentrated on the anion-exchange precolumn and easily cleaned up from river water matrix, because of its specific affinity, for the anion-exchange resin. A weak non-polar reversed-phase column was useful for the determination of LASs. The relationships between concentration and summation of peak areas were linear from 10 to 200 ppb for total LAS concentrated from 5 ml of standard solutions. Overall recovery for total LAS was found to be 99%. Total LAS in the Tama River waters was determined to be around 100 ppb by the proposed method.  相似文献   

11.
The use of a small precolumn instead of an injection loop for the determination of a new phytochemical drug, fellavine, and its metabolites is described. The method combines the direct injection of plasma and urine into the reversed-phase precolumn with separation on a Spheri-5 RP-18 analytical column. Different sorbents in the precolumn were compared. A recovery of fellavine and its metabolites from biological fluids except rat plasma of almost 100% was achieved on Chrompack RP (30-40 microns) and LiChrosorb RP-18 (7 microns). For rat plasma only the last sorbent gave 80% fellavine recovery. The influence of the protein binding on the fellavine recovery was examined. The limit of detection was equal to 0.05 micrograms/ml fellavine for plasma and 0.02 micrograms/ml for urine. To enhance the limit of detection longer precolumns were perferred.  相似文献   

12.
Abstract

This paper describes the electrochemical detection of ten phenylurea herbicides after on-line trace enrichment on a small C18 precolumn and liquid chromatography on a C18 analytical column. The method presented shows sub-ppb sensitivity in surface water samples without extensive sample pretreatment. Electrode contamination occurs but does not seriously interfere in the routine analysis of such samples. Selective determination (at 1. 0 V) of metoxuron in the presence of other phenylureas allows the detection of 30 ppt of the herbicide in surface water.  相似文献   

13.
Fast and sensitive packed capillary column switching liquid chromatography methodology has been developed for the determination of the pesticide rotenone in river water. Sample volumes of up to 1 ml are loaded onto a 23 x 0.25 mm, 5 microm Kromasil C18 packed capillary precolumn using a noneluting solvent composition of water-acetonitrile (99:1, v/v) at flow-rates up to 100 microl/min prior to solute backflushing onto a 200 x 0.32 mm, 3.5 microm Kromasil C18 packed capillary analytical column using a mobile phase of water-acetonitrile (30:70, v/v) at a flow-rate of 5 microl/min. The method was evaluated using river water samples spiked with rotenone in the concentration range 0.5-50 ng/ml using UV detection. The within-assay precision was between 5.0 and 7.7% relative standard deviation (RSD, n = 6) and the between assay precision was between 7.5 and 8.9% RSD (n = 6). The method was linear within the investigated mass range displaying a calibration curve correlation factor of 0.997. The mass limit of detection was 10 pg corresponding to a concentration limit of detection of 10 pg/ml, using time-of-flight mass spectrometry.  相似文献   

14.
An on-line system that consists of continuous-flow liquid membrane extraction (CFLME), C18 precolumn, and liquid chromatography with UV detection was applied to trace analysis of sulfonylurea herbicides in water. During preconcentration by CFLME, five target compounds, including metsulfuron methyl, bensulfuron methyl, tribenuron methyl, sulfometuron methyl, and ethametsulfuron, were enriched in 960 microl of 0.5 mol l(-1) Na2CO3-NaHCO3 (pH 10.8) buffer used as acceptor. This acceptor was on-line neutralized and transported to the C18 precolumn where the analytes were absorbed and focused. Then the focused analytes were injected onto a C18 analytical column for separation and detection at 240 nm. The proposed method was applied to determine sulfonylurea herbicides in water, river, and reservoir water with detection limits of 10-50 ng l(-1) when enriching a 120-ml sample. Throughput is typically one sample per hour.  相似文献   

15.
The present report describes the preparation and characterization of large-bore particle-entrapped monolithic precolumns, which are suitable for incorporation into a two-dimensional liquid chromatography (2D-LC) system for proteome analysis. The fritless precolumns with different inner diameter (i.d.) (320 and 530 microm) were rapidly and successfully prepared by entrapping octadecylsilica (ODS) particles (5 microm, 300 A) prepacked into fused silica capillaries with a sol-gel network, which was formed by hydrolysis and polycondensation of methyltriethoxysilane (MTES). By optimizing the composition of the sol solution, the resulting large-bore monolithic precolumns of 5 mm length allow a flow rate of 20 microL/min loading buffer at a reasonable low back pressure of 25 bar or less and are capable of withstanding up to 300 bar inlet pressure. Scanning electron micrograms of the precolumns profile showed that the evolving sol-gel network joined particles to each other and onto the column wall, and no cracking or shrinkage of the column bed was observed even in 530 microm-i.d. capillary. The performance of the particle-entrapped monolithic precolumns used for preconcentration and desalting of proteolytic digest was evaluated by on-line coupling the large-bore precolumns with a capillary reversed-phase liquid chromatographic (RPLC) column followed by UV detection. The laboratory-made monolithic precolumns with 320 and 530 microm i.d. were characterized by using BSA tryptic digest or peptide standards as the analytes with respect to sample loading capacity, linearity, recovery and reproducibility, etc. The results indicate that the large-bore and short precolumns (5 mm x 320 microm i.d. or 5 mm x 530 microm i.d.) allow sample fast loading at a flow rate of 30 or 60 microL/min. The precolumns also have a mass loading capacity for BSA peptides of about 70 microg and for standard peptides of about 80 microg. Good linear calibration curves (R2 > 0.99) were obtained and the limits of detection (signal-to-noise ratio, S/N = 3) were improved by more than 60-fold and were between 0.53 and 1.32 ng/microL even with a UV absorbance detector. The total recovery was found to be approximately 90-100% for BSA digest and standard peptides. The day-to-day relative standard deviation (RSD) values for recoveries of BSA peptides on a single precolumn ranged from 4.66 to 7.56% and 2.68 to 3.05% for precolumn back pressure, while the column-to-column RSD values were 3.51-6.13% and 1.22-1.26% for recoveries of BSA peptides and precolumn back pressure, respectively. With good precolumn reproducibility, no significant degradation or decrease in precolumn performance was showed even after approximately 150 preconcentration/desorption cycles. The precolumns also proved to be resistant to salt buffer with high concentration and low-pH mobile phase. The large-bore particle-entrapped monolithic precolumns will be further used in a high-throughput 2D-LC array system coupled with tandem matrix assisted laser desorption/ionization-time of flight-time of flight-mass spectrometry (MALDI-TOF-TOF-MS) detection for proteome analysis.  相似文献   

16.
An on-line sample enrichment system was designed using monolithic precolumns in microcolumn LC. The monolithic ODS capillary columns were prepared via in situ sol-gel processes. The enrichment efficiency of the monolithic columns was tested by using phthalates as the analytes. The relative standard deviations (n = 6) for the retention time, peak area and peak height were between 0.4 and 1.2%, 0.9 and 5.5% and 0.4 and 3.9%, respectively. The system was linear (R2 > 0.99) within the working sample concentration and sample volume ranges. Comparing to 0.2 microl injection with a typical sample injector, the theoretical plate number of a same separation column was increased by 3-6-fold when the precolumn unit was used for sample injection. The recoveries of the analytes were between 88 and 120%, and the sample volume that could be injected into the system was increased up to 5000-fold. The limits of detection were improved by more than 2000-fold and were between 0.21 and 0.87 ng ml(-1) even with a UV absorbance detector. This system was applied to the determination of phthalates contained in laboratory distilled water and tap water samples.  相似文献   

17.
The feasibility of using ethyl acetate for the desorption of trace pollutants from a liquid chromatographic precolumn on-line into a diphenyltetramethyldisilazane-deactivated retention gap and, subsequently analysis by means of capillary gas chromatography has been demonstrated. First 5% of methanol are added to the water sample to prevent sorption of analytes onto parts of the preconcentration system. About 1 ml of this aqueous sample is injected onto a precolumn containing a polymeric stationary phase, using water–methanol (95:5, v/v) for transport and clean-up. The precolumn is desorbed with ethyl acetate and a fraction of 75 μl is injected on-line into the retention gap; separation is then achieved on a capillary CP Sil 19 column. No breakthrough of the test compounds was observed in the preconcentration step. The recovery was quantitative and the response obtained with flame ionization detection was linear in the range 0.1–100 ng/ml. The effect of varying the sorption flow rate on the recovery was studied. The system was applied to the analysis of river water.  相似文献   

18.
Current on-line solid-phase extraction methods combined with HPLC for shortening the clean-up operation are not suitable for simultaneously detecting compounds that have a wide variety of hydrophobicities. To solve these problems, we designed a new on-line sample preparation system. The system consists of an eluting pump, a mixing TEE connector, a 10-port 2-position valve and a solid-phase extraction precolumn. The eluate from the precolumn is diluted with a weak solvent from the HPLC at the TEE connection to load low hydrophobic compounds onto the analytical column. The proposed on-line sample preparation system was successfully applied to the simultaneous analysis of 21 pesticides in river water using LC/TOF-MS. In this method, the recoveries from river water samples were 67 to 126% (mean 83%), the reproducibility (CV%) was in the range from 1.1 to 11% (mean 5.6%), the calibration curve was linear in the range from 1 ppb to 500 ppb (r > 0.999) and the detection limits (S/N = 3) were in the range from 0.0034 ppb (daimuron) to 3.3 ppb (oxine-copper).  相似文献   

19.
Summary Trace enrichment on a precolumn packed with copolymer material, coupled on-line with reversed-phase, column liquid chromatography-particle beammass spectrometry (RPLC-PB-MS) has been used for both target and non-target analysis of water samples. RPLC is carried out on a C-18-bonded silica column using a linear acetonitrile-0.1 M ammonium acetate gradient. Using optimised PB-MS conditions and 100–250 ml water samples, the detection limits for several phenylureas are in the 0.03–0.05 g l–1 range using the full-scan mode; repeatability is good and the LC-PB-MS system is robust. Several surface and drinking water samples have been analysed and low levels of various environmental contaminants have been identified using electron impact mass spectra. Applying chemical ionisation with methane as reagent gas in both the positive and negative mode in conjunction with PB-MS provides relevant confirmatory information.  相似文献   

20.
A liquid chromatographic method using gradient elution and diode array UV detection for the trace level determination of seven synthetic pyrethroids is described. The procedure involves automated on-line preconcentration on precolumns containing octadecylbonded silica using a Prospekt. Although the analytes display a mixed hydrophobic/hydrophilic behaviour, both breakthrough on the precolumn and adsorption to inner walls and surfaces can be prevented by adding Brij-35, a neutral surfactant, to the aqueous sample. The procedure has been tested for the analysis of surface water; detection limits typically are at the sub-g/l level and repeatability is excellent. The automated system is robust and there are no maintenance problems.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号