首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
A multi-residue method for the extraction and clean-up of sediment samples was developed for the analysis of pharmaceutical residues. Sediment samples were collected in the proximity of sewage water plant in Stockholm, Sweden. Target analytes were the basic β-blocker propranolol, the neutral neuroleptic carbamazepine and the acidic anticoagulant warfarin, the painkiller diclofenac and the lipid regulator gemfibrozil. The extraction solvent was optimised with regard to pH and organic modifer. Extraction and clean up were performed with liquid-liquid extraction and ultra-sonication followed by solid-phase extraction. One extraction solvent, containing acetone/McIlvaine buffer pH4, provided satisfactory extraction for all substances. LC/MSMS in the MRM mode was used for determination. The recoveries of the extraction and clean-up steps were 60–75% (±2–8%) and LOQs were in the range 0.4–8?ng/g sediment (dry weight). The pharmaceuticals found in the sediment samples were propranolol and carbamazepine, representing substances with basic and neutral properties. Additionally, the samples were analysed with LC/QTOF for verification with the use of accurate mass measurement in the full-scan mode. Pharmaceuticals not represented in the original method were looked for. Non-target pharmaceuticals found using the LC/QTOF system were the basic β-blocker metoprolol and the acidic painkiller naproxen.  相似文献   

2.
The authors describe a method for the trace determination of copper (II) and lead (II) in water and fish samples using solid-phase extraction via siliceous mesocellular foam functionalised by dithizone. Siliceous mesocellular was functionalised with dithizone, and the resulting sorbent was characterised by scanning electron microscopy, surface area analysis, thermogravimetric/differential thermal analysis and FTIR. Following solid-phase extraction of target ions by the sorbent, copper and lead ions were quantified by flame atomic absorption spectrometry. Factors affecting the sorption and desorption of target ions by the sorbent were evaluated and optimised. The calibration plot is linear in the 1 – 500 μg L?1 copper (II) and 3–700 μg L?1 lead (II) concentration range. The relative recovery efficiency in real sample analysis is in the range from 96 to 102%, and precision varies between 1.7 and 2.8%. It is should be noted that the limits of detection for the copper and lead analysis were 0.8 and 1.6 μg L?1, respectively. Also, the adsorption capacities for copper and lead ions were 120 and 160 mg g?1, respectively. The obtained pre-concentration factor for the lead and copper ions by the proposed solid-phase extraction was 75. The method was successfully applied to the determination of low levels of copper (II) and lead (II) in tap, Caspian sea, Persian gulf and lake water and also their detection in fish samples.  相似文献   

3.
The illicit use of β-blockers in food-producing animals may induce the presence of these compounds in meat and milk. The presence of β-blockers in these foods is a safety issue. A simple and economic high-performance liquid chromatography – tandem mass spectrometry method was developed and validated for β-blockers in bovine and porcine muscle, kidney, liver, and bovine milk. The focus of the study was on the detection and quantitation of acebutolol, atenolol, betaxolol, carazolol, metoprolol, nadolol, penbutolol, and propranolol. Homogenized tissues were digested with glucuronidase/aryl sulfatase to release the analytes that were extracted with acetonitrile and purified using matrix solid-phase dispersion. For residues in milk, acidolysis and extraction utilized trichloroacetic acid and acetonitrile and the samples were purified using mixed-mode cation exchange solid phase extraction. Standard curves generated using homogenized tissues and milk matrices were linear with correlation coefficients exceeding 0.99. The limits of detection and quantification were 1?μg/kg and 2.5?μg/kg, respectively, for all analytes in the meat tissues. The corresponding values for milk were 0.2?μg/kg and 0.5?μg/kg. The average recoveries of the spiked samples were from 84.4 to 114.2% with the standard deviations of the intra- and inter-day assays from 2.0 to 14.6% and 2.9 to 18.7%, respectively. This method is simple, economical, and time-saving for the determination of β-blockers in bovine tissue, porcine tissue, and bovine milk.  相似文献   

4.
In this study, two functionalised nanoporous silica gels containing dipyridyl sub-unit (SiL1 and SiL2) as selective solid-phase extraction materials for separation, pre-concentration and determination of trace levels of Pb(II) ions by inductively coupled plasma optical emission spectroscopy (ICP-OES) was investigated. The experimental parameters including pH, amounts and type of sorbent, sample volume, eluent type and interfering ions on the recovery of the target analytes were investigated, and the optimal experimental conditions were established. Under the optimised operating conditions with the SiL2 as sorbent, an enrichment factor of 300 was obtained. The detection limit based on three times standard deviations of the blanks was 150 ng L–1. The proposed method was applied to the determination of lead in natural and wastewater samples with satisfactory results (recoveries greater than 96.5%, RSDs lower than 5.0%).  相似文献   

5.
6.
A novel Fe3O4/graphene/polypyrrole nanocomposite has been successfully synthesised via a simple chemical method and applied as a new magnetic solid-phase extraction (MSPE) sorbent for the separation and pre-concentration of trace amounts of Pt (IV) in environmental samples followed by flame atomic absorption spectrometric (FAAS) detection. The nanocomposite has been characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Seven important parameters, affecting the extraction efficiency of Pt (IV), including pH, adsorption time, desorption solvent type and concentration, desorption time, elution volume and sample volume, were investigated. Under the optimised conditions, the calibration graph was linear in the range of 50–1500 μg L?1 (R = 0.993). The detection limit and pre-concentration factor (PF) for Pt (IV) were found to be 16 μg L?1 and 112.5, respectively. Under the optimised solid-phase extraction (SPE) conditions, the adsorption isotherm and the adsorption capacity of the nanocomposite for Pt (IV) were studied. Pt (IV) adsorption equilibrium data were fitted well to the Langmuir isotherm and the maximum adsorption capacity of the magnetic sorbent was calculated from the Langmuir isotherm model as 416.7 mg g?1. The precision of the method was studied as intraday and interday variations. A relative standard deviation percentage (RSD%) value less than 3.0 indicates that the method is precise. Also, the accuracy of the method was tested by the analysis of the standard reference material (NIST SRM 2556) and by recovery measurements on spiked real samples. It was also shown that the optimised method was suitable for the analysis of trace amounts of Pt (IV) in roadside soil, tap water and wastewater samples.  相似文献   

7.
The dual nature of the quaternary ammonium compounds, having permanently charged hydrophilic quaternary ammonium heads and long-chain hydrophobic tails, makes the sample preparation step and analysis of these compounds challenging. A high-throughput method based on thin-film solid-phase microextraction (SPME) and liquid chromatography mass spectrometry was developed for simultaneous quantitative analysis of nine benzylic and aliphatic quaternary ammonium compounds. Chromatographic separation and detection of analytes were obtained in reverse-phase mode in 8 min using a triple quadrupole mass spectrometer. Hydrophilic lipophilic balance particle-coated blades were found to be the most suitable among the different coatings tested in terms of recoveries and carryover on the blades. For desorption solvents, 70/30, v/v (A/B) with 0.1 % formic acid (where A is 10 mM ammonium acetate in acetonitrile/water (95/5?, v/v) and B is 0.1 %? (v/v) formic acid in isopropyl alcohol) was shown to be the most efficient solvent for the desorption of the analytes from the SPME sorbent. The SPME method was optimised in terms of extraction, pH, and preconditioning, as well as extraction and desorption times. Optimum conditions were 45 min of extraction time and 15 min of desorption time, all with agitation. The extraction was found to be optimum in a range of pH 6.0 to 8.0, which is consistent with the natural pH of water samples. Wide linear dynamic ranges with the developed method were obtained for each compound, enabling the application of the method for a wide range of concentrations. The developed method was validated according to the Food and Drug Administration criteria. The proposed method is the first SPME-based approach describing the applicability of the high-throughput thin-film SPME in a 96-well system for analysis of such challenging compounds.  相似文献   

8.
The synthesis of high specific surface area sorbents (HXLPP-WCX) in the form of hypercrosslinked polymer microspheres with narrow particle size distributions, average particle diameters around 6 μm, and weak cation-exchange (WCX) character, is described. The WCX character arises from carboxylic acid moieties in the polymers, derived from the comonomer methacrylic acid. A novel HXLPP-WCX sorbent with an attractive set of chemical and physical properties was then used in an off-line solid-phase extraction (SPE) protocol for the selective extraction of a group of basic compounds from complex environmental samples, a priority being the clean separation of the basic compounds of interest from acidic compounds and interferences. The separation power of the new sorbent for basic pharmaceuticals was compared to two commercially available, mixed-mode sorbents, namely Oasis WCX and Strata-X-CW. Under identical experimental conditions, HXLPP-WCX was found to deliver both higher capacity and better selectivity in SPE than either of the two commercially available materials. In an optimised SPE protocol, the HXLPP-WCX sorbent gave rise to quantitative and selective extractions of low μg l−1 levels of basic pharmaceuticals present in 500 ml of river water and 250 ml of effluent waste water.  相似文献   

9.
A solid-phase extraction (SPE) followed by liquid chromatography-electrospray ionisation tandem mass spectrometry (LC-ESI-MS-MS) method was developed and validated for simultaneous analysis of 11 pharmaceutical residues (propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, mecoprop, indomethacine, diclofenac, meclofenamic acid and monensin) in environmental water samples. The collision energy chosen for the multiple reaction monitoring (MRM) experiment was optimised. A number of parameters that may affect the recovery of the pharmaceuticals, such as the type of SPE cartridges, eluents, as well as water properties including pH value, salinity and concentration of colloid and surfactant were investigated. It is shown that the Oasis HLB SPE cartridge produced the best recoveries of the target pharmaceuticals while methanol was efficient in eluting pharmaceuticals from SPE cartridges. The recovery of some target compounds was enhanced with increasing salinity, but reduced by increasing pH value, and unaffected by surfactant concentration (0-10 microg/l). The recovery of most compounds was slightly increased by the presence of colloids (0-10 mg/l), which however caused a reduction in recovery for sulfamethoxazole and meberverine. The optimised method was further verified by performing spiking experiments in river water and seawater matrices, with good recovery and reproducibility for all except two compounds. The established method was successfully applied to environmental water samples from East Sussex, UK, for the determination of the target pharmaceuticals.  相似文献   

10.
Seven solid phase sorbent materials with reversed-phase, mixed-mode interactions (ion-exchange and reversed-phase), and molecularly imprinted polymers (MIP), namely Oasis HLB, Oasis MAX, Oasis MCX, Bond Elute Plexa, Bond Elute Plexa PAX, Bond Elute Plexa PCX, and SupelMIP sorbents, were investigated. The present study was focused on the retention and elution of pharmaceutically active substances based on several analyte-sorbent interaction properties. Basic drugs, such as β-blockers (i.e., atenolol, pindolol, acebutolol, metoprolol, labetalol, and propranolol) were selected as the model compounds for this study. These compounds are frequently encountered in anti-doping tests. The extraction efficiencies of the individual sorbents were compared based on the recovery of known amounts of the targeted analytes in a metered elution volume (500 μL) in three separate elution fractions. The elution efficiency of the total amount of the target analytes on various sorbents was not appreciably influenced by the volume of eluent required for complete elution. Based on the small matrix effects and clear baseline, SupelMIP was the most suitable sorbent for urine analysis. The relative analyte recoveries of the SPE-HPLC procedure proved satisfactory for the range from 94 % to 105 %, with an RSD ranging from 2 % to 4 %. The regression equations for all of the targeted compounds exhibited excellent linearity (r 2 ?>?0.9991) over the range of 10 to 1000 ng mL–1. The limits of detection and quantification for the selected β-blocker compounds in urine were in the ranges of 0.6 to 2.0 ng mL–1 and 2.0 to 6.7 ng mL–1, respectively.  相似文献   

11.
An integrated analytical method for the simultaneous determination of 4-n-nonylphenol (4-n-NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), bisphenol A (BPA) and triclosan (TCS) in wastewater (dissolved and particulate phase) and sewage sludge was developed based on gas chromatography-mass spectrometry. Chromatographic analysis was achieved after derivatization with bis(trimethylsilyl)trifluoroacetamide (BSTFA). Extraction from water samples was performed by solid-phase extraction (SPE). The optimization of SPE procedure included the type of sorbent and the type of the organic solvent used for the elution. Referred to solid samples, the target compounds were extracted by sonication. In this case the optimization of the extraction procedure included the variation of the amount of the extracted biomass, the duration and the temperature of sonication and the type of the extraction organic solvent. The developed extraction procedures resulted in good repeatability and reproducibility with relative standard deviations (RSDs) less than 13% for all the tested compounds for both types of samples. Satisfactory recoveries were obtained (>60%) for all the compounds in both liquid and solid samples, except for 4-n-NP, which gave recoveries up to 35% in wastewater samples and up to 63% in sludge samples. The limits of detection (LODs) of the target compounds varied from 0.03 (4-n-NP) to 0.41 microg l(-1) (NP2EO) and from 0.04 (4-n-NP) to 0.96 microg kg(-1) (NP2EO) for liquid and solid samples, respectively. The developed methods were successfully applied to the analysis of the target compounds in real samples.  相似文献   

12.
A mixed-mode polymeric sorbent was on-line coupled to liquid chromatography (LC) for the first time and applied to the selective solid-phase extract a group of pharmaceuticals in complex environmental water samples. The mixed-mode polymeric sorbent is a high-specific surface area hypercrosslinked polymer resin (HXLPP) in the form of monodisperse microspheres further modified with 1,2-ethylenediamine (EDA) moieties. These properties allow its application as a weak anion-exchange (WAX) sorbent in the on-line solid-phase extraction (SPE) coupling. The on-line SPE-LC method developed using the HXLPP-WAX sorbent was successfully applied to percolate a large volume of ultrapure (500 ml), river (250 ml) and effluent sewage (100 ml) water samples. In all the cases, the HXLPP-WAX resin provided near total recoveries of the most acidic compounds studied and clean chromatograms. This is because the ion-exchange interactions enable a washing step to be added to the SPE protocol that removes the compounds with weak acidic, neutral and basic properties from the sample matrix.  相似文献   

13.
A magnetic solid-phase extraction sorbent consisting of polyaniline-coated magnetite nanoparticles entrapped in alginate beads (PANI/alginate/Fe3O4) was successfully synthesised and applied for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) in water samples. The magnetite nanoparticles helped to provide an easy and rapid isolation of the sorbent from the sample solution using an external magnet. The alginate beads helped to increase the surface area for polyaniline coating. The polyaniline-coated alginate/magnetite composite helped to increase the extraction efficiency due to the π–π interactions between the polyaniline and the PAHs. Various parameters that affected the extraction efficiencies were optimised including the polymerisation time, the amount of sorbent, sample pH, extraction time, ionic strength, and desorption conditions. Under the optimal conditions, a linear response was achieved in the concentration range of 0.040–50.0 µg L?1, and the limit of detection was 0.010 µg L?1. This simple, convenient, cost-effective, and environmentally friendly method was successfully applied for the extraction and enrichment of PAHs in water samples. The recoveries ranged from 86.0% to 97.8% with a relative standard deviation <10 %.  相似文献   

14.
In this research, nickel ferrite (NiFe2O4) magnetic nanoparticles were synthesised by a simple method and applied as sorbent for magnetic solid-phase extraction of trace amounts of Au(III) from water samples. Detection in this technique was performed by flame atomic absorption spectrometry. The effects of sample pH, amount of sorbent, extraction time, desorption solvent and its volume on the extraction process were optimised. The effects of interfering ions on the recovery of the analyte were also evaluated in model solutions. The best results were obtained at pH 6.5 with 5 mL of eluent solution (0.1 mol L?1 sodium thiosulphate) and an extraction time of 30 min. Under optimal conditions, the sorption capacity was 34.6 mg g?1. Also, enhancement factor (for 100 mL of sample solution) was found to be 19.3. The calibration graph was linear in the range of 4.4–800.0 µg L?1 gold concentration and the limit of detection was 1.32 µg L?1. The relative standard deviation of the method (for n = 8) was 1.57%. The method was successfully applied to the extraction of Au(III) from water samples.  相似文献   

15.
M Walshe  M O'Keeffe  B Le Bizec 《The Analyst》1998,123(12):2687-2691
Chlorotestosterone and its metabolites were determined in urine samples from bovine animals treated with chlorotestosterone acetate by oral and intramuscular routes. Sample preparation, involving enzymatic deconjugation and solid-phase extraction, was optimised. The effect of different enzyme preparations, pH, and time of incubation were studied. An extraction/clean-up procedure based on solid-phase extraction (C18 cartridge) and liquid-liquid clean-up was developed. Determination of chlorotestosterone and its metabolites was by enzyme immunoassay and GC-MS. Metabolites were converted into their TMS-enol-TMS-ether and TMS-oxime-TMS-ether forms before GC-MS (EI) analysis.  相似文献   

16.
In this study, a new solid-phase microextraction (SPME) method for simultaneous extraction of pharmaceutical compounds with acidic and basic characteristics (ibuprofen, fenoprofen, diclofenac, diazepam and loratadine) from residual water samples is proposed. In this procedure, the extraction is processed using two distinct sample pH values. The extraction is begun at pH 2.5 to promote the sorption of acidic pharmaceuticals and after 35 min the sample pH is changed to 7.0 by adding 0.4 mol L−1 disodium hydrogenphosphate, so that the basic compounds can be sorbed by the fiber (20 min). The pH change is performed without interruption of the extraction process. A comparison between the proposed method and the SPME method applied to each group of the target compounds was performed. Gas chromatography coupled to mass spectrometry was used for separation and detection of analytes. The extraction conditions for the three methods were optimized using full factorial experimental design, response surface through a Doehlert matrix and central composite design. Limits of detection (0.02-0.43 μg L−1) and correlation coefficients (0.9970-0.9998) were determined for the three methods. The proposed extraction procedure was applied to samples of sewage treatment plant effluent and untreated wastewater. Recovery and relative standard deviation values ranged from 67 to 116% and 4.6 to 14.5%, respectively, for all compounds studied. Modification of sample pH during the extraction procedure was shown to be an excellent option for all of the compounds and may be extended to the simultaneous extraction of other compounds with different acid-base characteristics.  相似文献   

17.
A new analytical method is presented that allows simultaneous determination of neutral and acidic pharmaceuticals and pesticides in natural waters. The compounds investigated include frequently used pharmaceuticals, i.e., the anti-epileptic carbamazepine, four analgesic/anti-flammatory drugs (ibuprofen, diclofenac, ketoprofen and naproxen) and the lipid regulator clofibric acid and important pesticides including triazines, acetamides and phenoxy acids. Sample enrichment was achieved in one step with a newly developed solid-phase extraction procedure using the Waters Oasis HLB sorbent. The neutral compounds were analyzed by GC-MS in a first step, and then the acidic compounds after derivatization with diazomethane. Relative recoveries using isotope labeled internal standards were between 71 and 118% and the detection limits were in the range of 1 to 10 ng/l in drinking water, surface water and waste water treatment plant effluents (precision: 1-15%). The developed analytical method proved to be very durable during a 3-month field study and the target analytes were detected in concentrations of 5-3,500 ng/l in waste water treatment plant effluents, river water and lake water.  相似文献   

18.
《Analytical letters》2012,45(3):536-554
Abstract

A propranolol molecule-imprinted monolithic stationary phase (MIMSP) was synthesized by in situ technique. The recognition mechanism of the polymers and the influences of some chromatographic conditions were examined by high-performance liquid chromatography (HPLC). The imprinted polymers showed much higher selectivity for β-blockers than the nonimprinted polymers (NIPs) did, which proves the successful preparation of propranolol-imprinted polymers by using an in situ technique. Then, this technique was used to prepare a molecularly imprinted polymer solid-phase extraction column to concentrate propranolol from biological samples. The results showed that the imprinted solid-phase extraction column could selectively enrich and purify propranolol from biological samples, such as plasma.  相似文献   

19.
20.
ABSTRACT

In this work, the magnetic sorbent was developed by covalent binding of a Schiff base ligand, N,N’-bis(3-salicyliden aminopropyl)amine (salpr), on the surface of silica coated magnetic nanoparticles (Salpr@SCMNPs). The core-shell nanoparticle was applied for the magnetic solid-phase extraction (MSPE) combined with dispersive liquid-liquid microextraction (DLLME) of phenolic compounds from water samples prior to gas chromatography-flame ionisation detector (GC?FID). Characterisation of the Salpr@SCMNPs was performed with different physicochemical methods such as Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Variables affecting the performance of both extraction steps such as pH of the water sample, the sorbent amount, the desorption conditions, the extraction time; and extraction solvent were studied. Under the optimised conditions, the analytical performances were determined with a linear range of 0.01–100 ng mL?1 and a limit of detection at 0.003–0.02 ng mL?1 for all of the analytes studied. The intra-day (n = 5) and inter-day (n = 3) relative standard deviations (RSD%) of three replicates were each demonstrated in the range of 6.9–8.9% and 7.3–10.1%, respectively. The proposed method was executed for the analysis of real water samples, whereby recoveries in the range of 92.9–99.0% and RSD% lower than 6.1% were attained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号