首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
In this study an analytical procedure of solid-phase extraction (SPE) followed by gas chromatography mass spectrometry (GC-MS) was elaborated and validated for simultaneous determination of 11 acidic, neutral and basic emerging contaminants in wastewater. The most frequently used pharmaceuticals were studied, i.e. five anti-inflammatory drugs – ibuprofen, diclofenac, ketoprofen, naproxen and salicylic acid, an antiepileptic drug carbamazepine, clofibric acid, antibacterial triclosan, a plasticiser bisphenol A and two β-blockers – propranolol and metoprolol. Sample enrichment was performed using Oasis HLB sorbent. Sample pH and sorbent washing step during the solid-phase extraction were optimised on real wastewater samples. Recoveries of the most polar acidic compounds diminished substantially when the alkalinity of the sample loaded into the cartridge increased. Thus finally wastewater was extracted at pH 2.0. Before elution, sorbent was washed subsequently with 5% methanol in water and n-hexane, which resulted in best recoveries of most of the target compounds and reduced a co-elution phenomena with respect to β-blockers. The optimised method was successfully applied to influent and effluent samples from wastewater treatment plant, Krakow, Poland. All target compounds except propranolol were identified in wastewater at a concentration up to 12.8 µg L?1.  相似文献   

2.
Seven polymeric solid-phase extraction (SPE) sorbents were evaluated with regard to their ability to extract acidic, neutral and basic pharmaceuticals and estrogens simultaneously from water at neutral pH. Highest recoveries (70-100%) for the majority of the analytes were obtained with styrene-methacrylate and styrene-N-vinylpyrrolidone co-polymers. The latter one (Oasis HLB) was chosen for further refinement of an extraction method for the quantitative determination of acidic and neutral drugs in surface water samples at detection limits below 1 ng/l. A sequential elution protocol was applied for clean-up and separation of the extracted analytes into fractions suitable for further compound specific processing. The neutral analytes as well as the acidic compounds after derivatisation were quantified by GC-MS. Caffeine, ibuprofen, its metabolites and diclofenac were detected in river water samples in the 1-100 ng/l range.  相似文献   

3.
Sediments are the fate of several emerging organic contaminants, such as pharmaceuticals, personal care products and hormones, and therefore an important subject in environmental monitoring studies. In the present work, a simple and sensitive method was developed, validated and applied for the simultaneous extraction of atenolol, caffeine, carbamazepine, diclofenac, ibuprofen, naproxen, propranolol, triclosan, estrone, 17‐β‐estradiol and 17‐α‐ethinylestradiol using ultrasound‐assisted extraction from freshwater sediment samples followed by solid‐phase extraction clean‐up and liquid chromatography with tandem mass spectrometry detection. The solvent type and extraction pH were evaluated to obtain the highest recoveries of the compounds. The best method shows absolute recoveries between 54.0 and 94.4% at 50 ng/g concentration. The method exhibits good precision with relative standard deviation ranging from 1.0–16%. The detection and quantification limits ranged from 0.006–0.067 and 0.016–0.336 ng/g, respectively. The developed method was successfully applied to freshwater sediment samples collected from different sites in Jundiaí River basin of São Paulo State, Brazil. The compounds atenolol, caffeine, propranolol and triclosan were detected in all the sampling sites with concentrations of 13.8, 41.0, 28.5 and 176 ng/g, respectively.  相似文献   

4.
A comprehensive high-performance liquid chromatographic method was developed for quantitating propranolol and its known metabolites in serum, bile and urine. Analysis was performed before and after incubation of the samples with beta-glucuronidase-arylsulfatase to quantitate both free and conjugate forms of the oxidative metabolites. Fractionation of the basic, neutral and acidic metabolites was achieved by differential pH solvent extraction. The basic and neutral metabolites were extracted from the biological samples at pH 10.5 with 2% n-butanol in dichloromethane. Additional clean-up of the basic fraction by back-extraction into dilute acid was needed for those samples that were subjected to enzymatic hydrolysis. The original aqueous sample was titrated with acid to pH 1, followed by extraction of the remaining acidic metabolites into either n-butanol-dichloromethane (with unhydrolyzed serum) or carbon tetrachloride (with all other samples). Chromatographic separation of the metabolites in the different extracts was achieved on a reversed-phase C18 column, using a single isocratic mobile phase consisting of 0.044 M pH 2.7 phosphate buffer, tetrahydrofuran, methanol and acetonitrile, with the addition of n-butylamine as a competing base to control retention volume and peak shape. Detection and quantitation of propranolol and its metabolites in the low nanogram to sub-nanogram range was afforded by fluorescence at a low UV excitation wavelength. The coefficients of variation for replicate assay of spiked samples were uniformly less than 6% for all the analytes.  相似文献   

5.
A novel multi-templates molecularly imprinted polymer (MIP), using acidic pharmaceuticals mixture (ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA)) as the template, was prepared as solid-phase extraction (SPE) material for the quantitative enrichment of acidic pharmaceuticals in environmental samples and off-line coupled with liquid chromatography–mass spectrometry (LC/MS/MS). Washing solvent was optimized in terms of kind and volume for removing the matrix constituents nonspecifically adsorbed on the MIP. When 1 L of water sample spiked at 1 μg/L was loaded onto the cartridge, the binding capacity of the MIP cartridge were 48.7 μg/g for KEP, 60.7 μg/g for NPX, 52 μg/g for CA, 61.3 μg/g for DFC and 60.7 μg/g for IBP, respectively, which are higher than those of the commercial single template MIP in organic medium (e.g. toluene) reported in the literature. Recoveries of the five acidic pharmaceuticals extracted from 1 L of real water samples such as lake water and wastewater spiked at 1 μg/L were more than 95%. The recoveries of acidic pharmaceuticals extracted from 10-g sediment sample spiked at the 10 ng/g level were in the range of 77.4–90.6%. To demonstrate the potential of the MIP obtained, a comparison with commercial C18 SPE cartridge was performed. Molecularly imprinted solid-phase extraction (MISPE) cartridge showed higher recoveries than commercial C18 SPE cartridge for acidic pharmaceuticals. These results showed the suitability of the MISPE method for the selective extraction of a group of structurally related compounds such as acidic pharmaceuticals.  相似文献   

6.
Analytical methods have been developed that allow for the determination of antiphlogistics, lipid regulators, the antiepileptic carbamazepine, cytostatic agents, the psychiatric drug diazepam and iodinated contrast media (ICM) as well as two major polycyclic musk fragrances HHCB (galaxolide) and AHTN (tonalide) in activated and digested sludge. The procedures consist of ultrasonic solvent extraction (USE) using methanol/acetone or pressurized liquid extraction (PLE) using 100% methanol. Clean-up was performed with C18ec material and silica gel followed by LC tandem MS (electrospray or atmospheric pressure chemical ionization) detection for pharmaceuticals and iodinated contrast media as well as GC/MS in the SIM mode for musk fragrances. Absolute recoveries from spiked activated sludge in general ranged from 88+/-4 to 119+/-20% for ICM and were 78+/-15 and 87+/-10% for the AHTN and HHCB, respectively. For the pharmaceuticals, absolute recoveries in activated sludge ranged between 43 and 78%. Subsequently, compensation of losses was carried out by using surrogate standards (acidic pharmaceuticals: fenoprop, neutral pharmaceuticals: dihydro-carbamazepine, musk fragrances: AHTN-D3). With one exception the recoveries were also adequate in digested sludge ranging from 43% to 120%.  相似文献   

7.
8.
The degradation of two β-blockers (atenolol and propranolol) and one β-receptor agonist (salbutamol) during water chlorination was investigated by liquid chromatography-mass spectrometry (LC-MS). An accurate-mass quadrupole time-of-flight system (QTOF) was used to follow the time course of the pharmaceuticals and also used in the identification of the by-products. The degradation kinetics of these drugs was investigated at different concentrations of chlorine, bromide and sample pH by means of a Box-Behnken experimental design. Depending on these factors, dissipation half-lives varied in the ranges 68-145 h for atenolol, 1.3-33 min for salbutamol and 42-8362 min for propranolol. Normally, an increase in chlorine dosage and pH resulted in faster degradation of these pharmaceuticals. Moreover, the presence of bromide in water samples also resulted in a faster transformation of atenolol at low chlorine doses. The use of an accurate-mass high-resolution LC-QTOF-MS system permitted the identification of a total of 14 by-products. The transformation pathway of β-blockers/agonists consisted mainly of halogenations, hydroxylations and dealkylations. Also, many of these by-products are stable, depending on the chlorination operational parameters employed.  相似文献   

9.
We describe a method for the simultaneous determination of 12 kinds of polycyclic aromatic hydrocarbons (PAHs) in sediment based on liquid chromatography-atmospheric pressure photoionization-mass spectrometry (LC/APPI/MS). The method consists of PAH extractions by ultrasonics, clean-up by a solid-phase extraction procedure and determination by LC/APPI/MS. The limits of the determination for PAHs in sediment using the proposed method ranged from 0.06 to 0.9 mg/kg. PAHs were detected by this method in sediment samples on the mg/kg level.  相似文献   

10.
A sensitive method has been developed and validated for the determination of diverse groups of pharmaceuticals, steroid hormones, and hormone-like personal care products in sewage sludge. Samples were extracted by ultrasonic-assisted extraction followed by solid-phase extraction cleanup. For determination of estrogens and hormone-like phenolic compounds, sample extracts were further derivatized with dansyl chloride and purified with silica gel column chromatography to improve the analytical sensitivity. The chemicals were determined by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) in multiple-reaction monitoring mode. Recoveries ranged mostly from 63% to 119% with relative standard deviations within 15%. Method quantification limits were 0.1–3 ng g−1 dry weight (dw) for sewage sludge. The method was applied to a preliminary investigation of pharmaceuticals and personal care products (PPCPs) in sewage sludge and sediment in the Pearl River Delta, South China. Triclosan, triclocarban, 2-phenylphenol, bisphenol A, and parabens were ubiquitously detected at 3.6–5088.2 ng g−1 dw in sludge and 0.29–113.1 ng g−1 dw in sediment samples, respectively. Estrone, carbamazepine, metoprolol, and propranolol were also frequently quantified in the sludge and sediment samples. The dewatering process caused no significant losses of these PPCPs in sewage sludge.  相似文献   

11.
Four different commercial sorbents for solid-phase extraction have been evaluated for the extraction of a group of acidic pharmaceuticals in terms of selectivity and capacity: Oasis hydrophilic-lipophilic balance (HLB), Oasis MAX (strong anion exchange), Oasis WAX (weak anion exchange) and a commercial available molecularly imprinted polymer specific for non-steroidal anti-inflammatory drugs. Among the sorbents studied, molecularly imprinted polymer proved to be very effective in the reduction of matrix interferences and the selective extraction of acidic pharmaceuticals, such as salicylic acid, ibuprofen, fenoprofen, diclofenac and naproxen, among others, from effluent wastewater samples. Moreover, molecularly imprinted solid-phase extraction protocol was applied to liquid chromatography coupled to tandem mass spectrometry (MS/MS) with the purpose of evaluating the clean-up effect on ion suppression/enhancement when the complexity of the samples increases and a reduction of this effect was observed. Molecularly imprinted solid-phase extraction followed by liquid chromatography coupled to ultraviolet detection and liquid chromatography coupled to tandem mass spectrometry validation methodologies with effluent wastewaters were developed, obtaining recoveries between 70 and 85% and limits of detection at low levels of μg/L (0.15-1 μg/L) and ng/L (0.5-2 ng/L), respectively. The final application of molecularly imprinted solid-phase extraction and liquid chromatography coupled to MS/MS detection showed the presence of acidic pharmaceuticals studied in this work in effluent wastewaters (相似文献   

12.
An analytical chemical method has been developed for the simultaneous determination of 32 different pharmaceuticals in soils and sediments. The pharmaceuticals cover a varity of different compound groups. Soil samples were extracted with different solvents with the help of pressurized-liquid extraction (PLE) followed by clean-up using a solid-phase extraction (SPE) procedure. The purified extracts were analyzed by LC-MS/MS. The extraction method was evaluated by testing the following variables: extraction solvents, solvent pH, and temperature. Applying 20 g of soil/sediment and extracting with a mixture of methanol with aqueous ammonia solution (0.1 mol L?1) at 80?°C for 5 min in five cycles provided satisfactory recoveries between 66 and 114% with SD of between 1 and 14%. For preconcentration and purification tandem MAX-HLB cartridges were used. The volume and composition was optimized and the highest recoveries were obtained with a combination of methanol—aqueous ammonia solution. The limits of quantification (LOQs) were between 0.2 and 2 ng g?1 and linearity higher than 0.98 for the majority of the selected pharmaceuticals. The method was successfully applied to soil samples collected from the Jerez de la Frontera agricultural region, irrigated with treated wastewater, and to sediment samples from the River Guadalete. The detection of nine pharmaceuticals including stimulants, antirheumatics, analgesics, anti-inflammatories, tranquilizers, and veterinary medicines at ng g?1 concentration levels was achieved.  相似文献   

13.
Omeprazole is one of the most consumed pharmaceuticals around the world. However, this compound is scarcely detected in urban wastewater and surface water. The absence of this pharmaceutical in the aquatic ecosystem might be due to its degradation in wastewater treatment plants, as well as in receiving water. In this work, different laboratory‐controlled degradation experiments have been carried out on surface water in order to elucidate generated omeprazole transformation products (TPs). Surface water spiked with omeprazole was subjected to hydrolysis, photo‐degradation under both sunlight and ultraviolet radiation and chlorination. Analyses by liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry (LC–QTOF MS) permitted identification of up to 17 omeprazole TPs. In a subsequent step, the TPs identified were sought in surface water and urban wastewater by LC–QTOF MS and by LC coupled to tandem mass spectrometry with triple quadrupole. The parent omeprazole was not detected in any of the samples, but four TPs were found in several water samples. The most frequently detected compound was OTP 5 (omeprazole sulfide), which might be a reasonable candidate to be included in monitoring programs rather than the parent omeprazole. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Narrow-bore column liquid chromatography coupled on-line with capillary gas chromatography (LC/GC) is used for the determination of polychlorinated biphenyls (PCBs) in sediment via a heart-cutting technique. This method is compared with a method in which two off-line column clean-up steps are used with subsequent analysis by capillary gas chromatography. For the LC/GC analysis the recovery of PCBs was 90–100%. For two sediment samples from the river Meuse the LC/GC and the other, more laborious method showed good agreement.  相似文献   

15.
A new analytical method is presented that allows simultaneous determination of neutral and acidic pharmaceuticals and pesticides in natural waters. The compounds investigated include frequently used pharmaceuticals, i.e., the anti-epileptic carbamazepine, four analgesic/anti-flammatory drugs (ibuprofen, diclofenac, ketoprofen and naproxen) and the lipid regulator clofibric acid and important pesticides including triazines, acetamides and phenoxy acids. Sample enrichment was achieved in one step with a newly developed solid-phase extraction procedure using the Waters Oasis HLB sorbent. The neutral compounds were analyzed by GC-MS in a first step, and then the acidic compounds after derivatization with diazomethane. Relative recoveries using isotope labeled internal standards were between 71 and 118% and the detection limits were in the range of 1 to 10 ng/l in drinking water, surface water and waste water treatment plant effluents (precision: 1-15%). The developed analytical method proved to be very durable during a 3-month field study and the target analytes were detected in concentrations of 5-3,500 ng/l in waste water treatment plant effluents, river water and lake water.  相似文献   

16.
The aim of this work was to develop a method for the characterization and determination of diuretics in human urine samples by liquid chromatography (LC) coupled to pneumatically assisted electrospray ionization (ES) mass spectrometry (MS). The diuretics studied were substances forbidden by the IOC such as trichlormethiazide, furosemide, canrenoic acid, benzthiazide, bendroflumethiazide, bumetanide, etacrynic acid and spironolactone. For this purpose, the operational parameters of electrospray, such as counter electrode voltage, capillary voltage, sample cone voltage and source temperature, were optimized in order to obtain the best signal stability and the highest sensitivity for the greatest number of diuretic agents. The optimized separation method was successfully coupled with the MS system to analyze the above-mentioned diuretics extracted from spiked urine samples by a liquid extraction and clean-up procedure at basic pH, using ethyl acetate as solvent and the salting-out effect (NaCl). The mass spectra obtained provide adequate information for identification purposes. Positive urine samples obtained from athletes were also analyzed. The presence of these substances in human urine was confirmed by this method, making LC/ES-MS an analytical tool to be considered in the area of antidoping control.  相似文献   

17.
A mixed-mode polymeric sorbent was on-line coupled to liquid chromatography (LC) for the first time and applied to the selective solid-phase extract a group of pharmaceuticals in complex environmental water samples. The mixed-mode polymeric sorbent is a high-specific surface area hypercrosslinked polymer resin (HXLPP) in the form of monodisperse microspheres further modified with 1,2-ethylenediamine (EDA) moieties. These properties allow its application as a weak anion-exchange (WAX) sorbent in the on-line solid-phase extraction (SPE) coupling. The on-line SPE-LC method developed using the HXLPP-WAX sorbent was successfully applied to percolate a large volume of ultrapure (500 ml), river (250 ml) and effluent sewage (100 ml) water samples. In all the cases, the HXLPP-WAX resin provided near total recoveries of the most acidic compounds studied and clean chromatograms. This is because the ion-exchange interactions enable a washing step to be added to the SPE protocol that removes the compounds with weak acidic, neutral and basic properties from the sample matrix.  相似文献   

18.
Abstract

An automated on-line solid phase extraction procedure followed by liquid chromatography with diode array detection was investigated for the determination of different classes of pesticides in water samples containing varied amount of humic substances. The different pesticides used were: carbendazin, carbofuran, atrazine, diuron, propanil, molinate, alachlor, parathion-ethyl, diazinon, trifluralin and the degradation products deisopropylatrazine and deethylatrazine. Humic substances extracted from a Brazilian sediment were used from 5 to 80 mg/l and their influence on recoveries was evaluated in neutral and acidic media. Recoveries higher than 70% were obtained for all the pesticides, from the preconcentration of 75 ml of aqueous sample fortified at 2 ng/ml using precolumns packed with PLRP-S. Good recoveries were obtained at neutral pH for most of the analytes up to 40 mg/l of humic acid. Only at 80 mg/l the recoveries were significantly affected, both at acidic and neutral pH. The method was applied to the determination of pesticides in river water spiked at 0.1 to 1 ng/ml. Detection limits obtained for water containing 10 mg/l of humic acid were between 0.05 and 0.3 ng/ml.  相似文献   

19.
Macitentan (MCT) is an endothelin receptor antagonist used for the treatment of pulmonary arterial hypertension. In the present study, MCT was subjected to forced degradation as per ICH guidelines. The drug degraded extensively in acidic, basic as well as neutral hydrolytic conditions and seven degradation products (DPs) were formed. All these DPs were selectively separated using high-performance liquid chromatography (HPLC) with a stationary phase of Inertsil C18 column (150 × 4.6 mm, 5 μm) and a mobile phase consisting of gradient mixture of 0.02% trifluoroacetic acid (TFA) and acetonitrile (ACN). The developed HPLC method was transferred to LC–ESI–QTOF–MS/MS for identification of DPs. The final mass spectrometric conditions were optimized for better ionization of drug and DPs with optimum mass signal sensitivity. All the formed DPs were new and well separated with sufficient resolution. The developed HPLC method was validated as per ICH-guidelines and can be used in drug testing labs for determination of quality of MCT in bulk and finished formulations.  相似文献   

20.
Spreading sewage sludge on agricultural lands has been actively promoted by national authorities as an economic way of recycling. However, as by-product of wastewater treatment, sewage sludge may contain toxic substances, which could be incorporated into agricultural products or be distributed in the environment. Moreover, sediments can be contaminated by the discharge of wastewater effluents into rivers. This article reviews the determination of emerging contaminants (surfactants, flame retardants, pharmaceuticals and personal care products) in environmental solid samples (sludge, soil and sediment). Sample preparation, including extraction and clean-up, as well as the subsequent instrumental determination of contaminants are discussed. Recent applications of extraction techniques, such as Soxhlet extraction, ultrasound assisted extraction, pressurised liquid extraction, microwave assisted extraction and matrix solid-phase dispersion to the analysis of emerging contaminants in environmental solid samples are reviewed. Determination of these contaminants, generally carried out by gas chromatography and liquid chromatography coupled with different detectors, especially mass spectrometry for the identification and quantification of residues, is also summarised and discussed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号