首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel approach to the development of a code for the solution of the time-dependent two-dimensional Navier–Stokes equations is described. The code involves coupling between the method of lines (MOL) for the solution of partial differential equations and a parabolic algorithm which removes the necessity of iterative solution on pressure and solution of a Poisson-type equation for the pressure. The code is applied to a test problem involving the solution of transient laminar flow in a short pipe for an incompressible Newtonian fluid. Comparisons show that the MOL solutions are in good agreement with the previously reported values. The proposed method described in this paper demonstrates the ease with which the Navier–Stokes equations can be solved in an accurate manner using sophisticated numerical algorithms for the solution of ordinary differential equations (ODEs).  相似文献   

2.
A method which uses only the velocity components as primitive variables is described for solution of the incompressible unsteady Navier–Stokes equations. The method involves the multiplication of the primitive variable-based Navier–Stokes equations with the unit normal vector of finite volume elements and the integration of the resulting equations along the boundaries of four-node quadrilateral finite volume elements. Therefore, the pressure term is eliminated from the governing equations and any difficulty associated with pressure or vorticity boundary conditions is avoided. The equations are discretized on four-node quadrilateral finite volume elements by using the second-order-accurate central finite differences with the mid-point integral rule in space and the first-order-accurate backward finite differences in time. The resulting system of algebraic equations is solved in coupled form using a direct solver. As a test case, an impulsively accelerated lid-driven cavity flow in a square enclosure is solved in order to verify the accuracy of the present method.  相似文献   

3.
A time-implicit numerical method for solving unsteady incompressible viscous flow problems is introduced. The method is based on introducing intermediate compressibility into a projection scheme to obtain a Helmholtz equation for a pressure-type variable. The intermediate compressibility increases the diagonal dominance of the discretized pressure equation so that the Helmholtz pressure equation is relatively easy to solve numerically. The Helmholtz pressure equation provides an iterative method for satisfying the continuity equation for time-implicit Navier–Stokes algorithms. An iterative scheme is used to simultaneously satisfy, within a given tolerance, the velocity divergence-free condition and momentum equations at each time step. Collocated primitive variables on a non-staggered finite difference mesh are used. The method is applied to an unsteady Taylor problem and unsteady laminar flow past a circular cylinder.  相似文献   

4.
An algorithm based on the finite element modified method of characteristics (FEMMC) is presented to solve convection–diffusion, Burgers and unsteady incompressible Navier–Stokes equations for laminar flow. Solutions for these progressively more involved problems are presented so as to give numerical evidence for the robustness, good error characteristics and accuracy of our method. To solve the Navier–Stokes equations, an approach that can be conceived as a fractional step method is used. The innovative first stage of our method is a backward search and interpolation at the foot of the characteristics, which we identify as the convective step. In this particular work, this step is followed by a conjugate gradient solution of the remaining Stokes problem. Numerical results are presented for:
  • a Convection–diffusion equation. Gaussian hill in a uniform rotating field.
  • b Burgers equations with viscosity.
  • c Navier–Stokes solution of lid‐driven cavity flow at relatively high Reynolds numbers.
  • d Navier–Stokes solution of flow around a circular cylinder at Re=100.
Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
This paper summarizes the method-of-lines (MOL) solution of the Navier–Stokes equations for an impulsively started incompressible laminar flow in a circular pipe with a sudden expansion. An intelligent higher-order spatial discretization scheme, which chooses upwind or downwind discretization in a zone-of-dependence manner when flow reversal occurs, was developed for separated flows. Stability characteristics of a linear advective–diffusive equation were examined to depict the necessity of such a scheme in the case of flow reversals. The proposed code was applied to predict the time development of an impulsively started flow in a pipe with a sudden expansion. Predictions were found to show the expected trends for both unsteady and steady states. This paper demonstrates the ease with which the Navier–Stokes equations can be solved in an accurate manner using sophisticated numerical algorithms for the solution of ordinary differential equations (ODEs). Solutions of the Navier–Stokes equations in primitive variables formulation by using the MOL and intelligent higher-order spatial discretization scheme are not available to date. © 1997 by John Wiley & Sons, Ltd.  相似文献   

6.
In this article, a reduced‐order modeling approach, suitable for active control of fluid dynamical systems, based on proper orthogonal decomposition (POD) is presented. The rationale behind the reduced‐order modeling is that numerical simulation of Navier–Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. The possibility of obtaining reduced‐order models that reduce the computational complexity associated with the Navier–Stokes equations is examined while capturing the essential dynamics by using the POD. The POD allows the extraction of a reduced set of basis functions, perhaps just a few, from a computational or experimental database through an eigenvalue analysis. The solution is then obtained as a linear combination of this reduced set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations (PDEs). It is used here in active control of fluid flows governed by the Navier–Stokes equations. In particular, flow over a backward‐facing step is considered. Reduced‐order models/low‐dimensional dynamical models for this system are obtained using POD basis functions (global) from the finite element discretizations of the Navier–Stokes equations. Their effectiveness in flow control applications is shown on a recirculation control problem using blowing on the channel boundary. Implementational issues are discussed and numerical experiments are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A new finite difference method for the discretization of the incompressible Navier–Stokes equations is presented. The scheme is constructed on a staggered‐mesh grid system. The convection terms are discretized with a fifth‐order‐accurate upwind compact difference approximation, the viscous terms are discretized with a sixth‐order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth‐order difference approximation on a cell‐centered mesh. Time advancement uses a three‐stage Runge–Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A numerical scheme for the simulation of blood flow and transport processes in large arteries is presented. Blood flow is described by the unsteady 3D incompressible Navier–Stokes equations for Newtonian fluids; solute transport is modelled by the advection–diffusion equation. The resistance of the arterial wall to transmural transport is described by a shear-dependent wall permeability model. The finite element formulation of the Navier–Stokes equations is based on an operator-splitting method and implicit time discretization. The streamline upwind/Petrov–Galerkin (SUPG) method is applied for stabilization of the advective terms in the transport equation and in the flow equations. A numerical simulation is carried out for pulsatile mass transport in a 3D arterial bend to demonstrate the influence of arterial flow patterns on wall permeability characteristics and transmural mass transfer. The main result is a substantial wall flux reduction at the inner side of the curved region. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
A new computational code for the numerical integration of the three-dimensional Navier–Stokes equations in their non-dimensional velocity–pressure formulation is presented. The system of non-linear partial differential equations governing the time-dependent flow of a viscous incompressible fluid in a channel is managed by means of a mixed spectral–finite difference method, in which different numerical techniques are applied: Fourier decomposition is used along the homogeneous directions, second-order Crank–Nicolson algorithms are employed for the spatial derivatives in the direction orthogonal to the solid walls and a fourth-order Runge–Kutta procedure is implemented for both the calculation of the convective term and the time advancement. The pressure problem, cast in the Helmholtz form, is solved with the use of a cyclic reduction procedure. No-slip boundary conditions are used at the walls of the channel and cyclic conditions are imposed at the other boundaries of the computing domain. Results are provided for different values of the Reynolds number at several time steps of integration and are compared with results obtained by other authors. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
A well‐recognized approach for handling the incompressibility constraint by operating directly on the discretized Navier–Stokes equations is used to obtain the decoupling of the pressure from the velocity field. By following the current developments by Guermond and Shen, the possibilities of obtaining accurate pressure and reducing boundary‐layer effect for the pressure are analysed. The present study mainly reports the numerical solutions of an unsteady Navier–Stokes problem based on the so‐called consistent splitting scheme (J. Comput. Phys. 2003; 192 :262–276). At the same time the Dirichlet boundary value conditions are considered. The accuracy of the method is carefully examined against the exact solution for an unsteady flow physics problem in a simply connected domain. The effectiveness is illustrated viz. several computations of 2D double lid‐driven cavity problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A Hermitian–Fourier numerical method for solving the Navier–Stokes equations with one non‐homogeneous direction had been presented by Schiestel and Viazzo (Internat. J. Comput. Fluids 1995; 24 (6):739). In the present paper, an extension of the method is devised for solving problems with two non‐homogeneous directions. This extension is indeed not trivial since new algorithms will be necessary, in particular for pressure calculation. The method uses Hermitian finite differences in the non‐periodic directions whereas Fourier pseudo‐spectral developments are used in the remaining periodic direction. Pressure–velocity coupling is solved by a simplified Poisson equation for the pressure correction using direct method of solution that preserves Hermitian accuracy for pressure. The turbulent flow after a backward facing step has been used as a test case to show the capabilities of the method. The applications in view are mainly concerning the numerical simulation of turbulent and transitional flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A three‐dimensional (3‐D) numerical method for solving the Navier–Stokes equations with a standard k–ε turbulence model is presented. In order to couple pressure with velocity directly, the pressure is divided into hydrostatic and hydrodynamic parts and the artificial compressibility method (ACM) is employed for the hydrodynamic pressure. By introducing a pseudo‐time derivative of the hydrodynamic pressure into the continuity equation, the incompressible Navier–Stokes equations are changed from elliptic‐parabolic to hyperbolic‐parabolic equations. In this paper, a third‐order monotone upstream‐centred scheme for conservation laws (MUSCL) method is used for the hyperbolic equations. A system of discrete equations is solved implicitly using the lower–upper symmetric Gauss–Seidel (LU‐SGS) method. This newly developed numerical method is validated against experimental data with good agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The time-dependent Navier–Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity–pressure–vorticity–temperature–heat-flux ( u –P–ω–T– q ) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.  相似文献   

15.
In this paper, the global method of differential quadrature (DQ) is applied to solve three‐dimensional Navier–Stokes equations in primitive variable form on a non‐staggered grid. Two numerical approaches were proposed in this work, which are based on the pressure correction process with DQ discretization. The essence in these approaches is the requirement that the continuity equation must be satisfied on the boundary. Meanwhile, suitable boundary condition for pressure correction equation was recommended. Through a test problem of three‐dimensional driven cavity flow, the performance of two approaches was comparatively studied in terms of the accuracy. The numerical results were obtained for Reynolds numbers of 100, 200, 400 and 1000. The present results were compared well with available data in the literature. In this work, the grid‐dependence study was done, and the benchmark solutions for the velocity profiles along the vertical and horizontal centrelines were given. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A new numerical method is presented for the solution of the Navier–Stokes and continuity equations governing the internal incompressible flows. The method denoted as the CVP method consists in the numerical solution of these equations in conjunction with three additional variational equations for the continuity, the vorticity and the pressure field, using a non‐staggered grid. The method is used for the study of the characteristics of the laminar fully developed flows in curved square ducts. Numerical results are presented for the effects of the flow parameters like the curvature, the Dean number and the stream pressure gradient on the velocity distributions, the friction factor and the appearance of a pair of vortices in addition to those of the familiar secondary flow. The accuracy of the method is discussed and the results are compared with those obtained by us, using a variation of the velocity–pressure linked equation methods denoted as the PLEM method and the results obtained by other methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
This paper studies the efficiency of two ways to treat the non‐linear convective term in the time‐dependent incompressible Navier–Stokes equations and of two multigrid approaches for solving the arising linear algebraic saddle point problems. The Navier–Stokes equations are discretized by a second‐order implicit time stepping scheme and by inf–sup stable, higher order finite elements in space. The numerical studies are performed at a 3D flow around a cylinder. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A Fourier–Chebyshev pseudospectral method is used for the numerical simulation of incompressible flows in a three-dimensio nal channel of square cross-section with rotation. Realistic, non-periodic boundary conditions that impose no-slip conditions in two directions (spanwis e and vertical directions) are used. The Navier–Stokes equations are integrated in time using a fractional step method. The Poisson equations for pressure and the Helmholtz equation for velocity are solved using a matrix diagonalization (eigenfunction decomposition) method, through which we are able to reduce a three-dimensional matrix problem to a simple algebraic vector equation. This results in signficant savings in computer storage requirement, particularly for large-scale computations. Verification of the numerical algorithm and code is carried out by comparing with a limiting case of an exact steady state solution for a one-dimensional channel flow and also with a two-dimensional rotating channel case. Two-cell and four-cell two-dimensional flow patterns are observed in the numerical experiment. It is found that the four-cell flow pattern is stable to symmetri cal disturbances but unstable to asymmetrical disturbances.  相似文献   

19.
In this paper, we present spectral/hp penalty least‐squares finite element formulation for the numerical solution of unsteady incompressible Navier–Stokes equations. Pressure is eliminated from Navier–Stokes equations using penalty method, and finite element model is developed in terms of velocity, vorticity and dilatation. High‐order element expansions are used to construct discrete form. Unlike other penalty finite element formulations, equal‐order Gauss integration is used for both viscous and penalty terms of the coefficient matrix. For time integration, space–time decoupled schemes are implemented. Second‐order accuracy of the time integration scheme is established using the method of manufactured solution. Numerical results are presented for impulsively started lid‐driven cavity flow at Reynolds number of 5000 and transient flow over a backward‐facing step. The effect of penalty parameter on the accuracy is investigated thoroughly in this paper and results are presented for a range of penalty parameter. Present formulation produces very accurate results for even very low penalty parameters (10–50). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A new fourth‐order compact formulation for the steady 2‐D incompressible Navier–Stokes equations is presented. The formulation is in the same form of the Navier–Stokes equations such that any numerical method that solve the Navier–Stokes equations can easily be applied to this fourth‐order compact formulation. In particular, in this work the formulation is solved with an efficient numerical method that requires the solution of tridiagonal systems using a fine grid mesh of 601 × 601. Using this formulation, the steady 2‐D incompressible flow in a driven cavity is solved up to Reynolds number with Re = 20 000 fourth‐order spatial accuracy. Detailed solutions are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号