首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The diffusivity and viscosity of water confined in micropores were studied by molecular dynamics simulations. The effects of pore width and density were analyzed at pore widths from 0.9 to 2.6nm. The diffusivity in micropores is lower than that of the bulk, and it decreases as pore width decreases and as density increases. But the viscosity in micropores is much larger than that of the bulk, and it increases as pore width decreases and as density increases. The diffusivity in channel parallel direction is obviously larger than that in channel perpendicular directions.  相似文献   

2.
微孔中简单流体扩散行为的分子动力学模拟研究   总被引:3,自引:0,他引:3  
用分子动力学模拟方法研究了受限在微孔中的简单流体氩的扩散行为,考察了微孔类型、孔径、温度和密度对微孔中流体扩散系数的影响.研究发现,微孔中流体的扩散系数均小于体相流体,并且随孔径的减小而减小,同时沿孔道或狭缝方向的扩散系数分量远大于沿孔径方向的分量,并且流体在通道型微孔中的扩散系数小于在狭缝型微孔中的扩散系数,温度和密度也是影响微孔中扩散的重要因素.  相似文献   

3.
The transport properties, including the diffusivity and viscosity, of water confined in hydrophobic nanopores and nanoslits were studied by molecular dynamics simulations. The results show that the diffusion coefficient in nanopores and nanoslits is markedly lower than that in the bulk. But the viscosity is much larger than that in bulk. The parallel diffusion coefficient is obviously larger than the perpendicular ones. The diffusion coefficient in the channel pore is ever less than that in the slit pore at the same pore width, but the viscosity is larger. The temperature and density affect significantly the diffusivity and viscosity in nanopores and nanoslits. Lower density water exhibits some special characteristics on density profiles in nanopores and nanoslits at lower temperatures, and the density profiles show a change from homogeneous to inhomogeneous as the pore width is reduced. Even clusters occurred in micropores.  相似文献   

4.
疏水性微孔中水的结构和扩散性质的分子模拟   总被引:1,自引:0,他引:1  
用分子动力学(MD)方法模拟了受限在疏水性微孔中的水的结构与动力学行为.分别考察了孔径、温度和压力对水在孔道方向的密度分布和自扩散系数的影响,计算了不同温度下水的径向分布函数.发现在小孔径的微孔中,随着温度的降低,水分子沿孔道的分布逐渐变得不均匀,最终导致气-液相分离,微孔孔道内有明显的分段现象.受限在小孔径微孔中水的自扩散系数大约为体相流体水的20%~30%,并且随着孔径的减小,自扩散系数也减小.同时还发现沿孔道方向的自扩散系数分量大约为孔径方向的4~5倍.提出了微孔中水自扩散系数的关联模型.  相似文献   

5.
The density profiles and the diffusion behavior of fluid argon confined in micropores were studied by molecular-dynamics simulations. The effects of pore size (width), temperature and number density on the density profiles and the self-diffusion coefficients in micropores were simulated with pore widths from 0.6 to 4.0 nm. The density profiles are greatly affected by the pore size. Strong inhomogeneities in the channel direction and vapor-liquid phase separation in the micropores were observed when initial conditions were chosen in the coexistence region of the fluid. The self-diffusion coefficient in the channel direction in the pores was found to be much lower than in the bulk, and decreasing with decreasing pore size, decreasing temperature, and increasing density.  相似文献   

6.
The fluid structure and transport properties of water confined in single-walled carbon nanotubes (CNTs) with different diameters have been investigated by molecular-dynamics simulation. The effects of CNT diameter, density of water, and temperature on the molecular distributions and transport behaviors of water were analyzed. It is interesting that the water molecules ordered in helix inside the (10, 10) CNT, and the layered distribution was clearly observed. It was found that the axial and radial diffusivities in CNTs were much lower than that of the bulk, and it ever decreased as the diameter of CNT decreases. The axial thermal conductivity and shear viscosity in CNTs are obviously larger than that of the bulk and those in the radial direction, they increase sharply as the diameter of CNT decreases, which is clearly in contrast to the diffusivity. The inner space of CNT and the interactions between water molecules and the confining walls play a key role in the structure and transport properties of water confined in the CNTs.  相似文献   

7.
The self-diffusion coefficients were calculated by molecular dynamics simulations and the effects of pore width, temperature, and fluid density on diffusion behavior of simple fluid argon and polar fluid water confined in micropores were analyzed and studied. A mathematical model describing diffusion behavior of fluids confined in micropores was proposed from the theories of molecular dynamics and molecular kinematics, and validated on the basis of the simulation results at various conditions. The model indicates that the diffusion coefficient is proportional to the square root of the pore width and to the temperature divided by the density squared. It is applicable to either liquid or gas states and only two parameters are required.  相似文献   

8.
The transport and structural properties of water confined in nanotubes with different diameters were studied by molecular dynamics (MD) simulation. The effects of pore size, molecule-wall interaction, and the helicity of CNT on the diffusivity, thermal conductivity, and shear viscosity as well as density profile were analyzed. For diffusivity, in model NT > in armchair CNT > in zigzag CNT at similar conditions. However in contrast to the diffusivity, the thermal conductivity and the shear viscosity increase as the pore size decreases, in zigzag CNT > in armchair CNT > (or approximately ) in model NT. The ordered layer distribution of water molecules in nanotubes is clear. It suggests the structure of fluid in the zigzag CNTs is more ordered, and more solidlike. In the nanotubes, where the molecule and the pore dimensions are of similar order of magnitude, the nature of water-water and water-wall interactions, the confinement effect of space, and the helicity of CNT become more significant.  相似文献   

9.
The effect of solvation and confinement on the conformational equilibria and kinetics of n-butane is examined using molecular dynamics simulations of the bulk and confined fluids and compared to appropriately chosen reference states. Clear evidence for a solvent shift of the preferred conformation in bulk n-butane is found. At a temperature of 292 K and a density of 6.05 nm-3 a small solvent shift in favor of gauche is observed (similar to previously reported values), and the shift increases substantially with an increase in density to 8.28 nm-3. The rate of torsional interconversion from the trans to the gauche state, calculated using the relaxation function method, was found to increase with increasing temperature and density. The rate constants kTG and kGT have an Arrhenius temperature dependence yielding activation energies significantly lower than the trans-gauche and gauche-trans barrier heights in the torsional potential for a free molecule, depending on the density. In the confined phase, we considered the same densities as simulated in the bulk phase, and for four different values of the physical pore width (approximately 1.5-4.0 nm). At the high density, we find that the position of the trans-gauche equilibrium is displaced towards excess trans compared with the bulk phase, reflecting the confinement and interactions of the molecules with the pore wall. The isomerization rate is found to decrease with decreasing pore width. Again, we find that the kinetics obeys an Arrhenius rate law and the activation energy for the trans-gauche and gauche-trans interconversions is slightly smaller than that of the bulk fluid at the same density.  相似文献   

10.
The behavior of nematic liquid crystal (LC) Merck Phase 4 confined to controlled pore glass (CPG) materials was investigated using 129Xe nuclear magnetic resonance (NMR) spectroscopy of xenon gas dissolved in the LC. The average pore diameters of the materials varied from 81 to 2917 A, and the measurements were carried out within a wide temperature range (approximately 185-370 K). The spectra contain lots of information about the effect of confinement on the phase of the LC. The theoretical model of shielding of noble gases dissolved in liquid crystals on the basis of pairwise additivity approximation was applied to the analysis of the spectra. When pore diameter is small, smaller than approximately 150 A, xenon experiences on average an isotropic environment inside the pore, and no nematic-isotropic phase transition is observed. When the size is larger than approximately 150 A, nematic phase is observed, and the LC molecules are oriented along pore axis. The orientational order parameter of the LC, S, increases with increasing pore size. In the largest pores, the orientation of the molecules deviates from the pore axis direction to magnetic field direction, which implies that the size of the pores (approximately 3000 A) is close to magnetic coherence length. The decrease of magnetic coherence length with increasing temperature is clearly seen from the spectra. When the sample is cooled rapidly by immersing it in liquid nitrogen, xenon atoms do not squeeze out from the solid, as they do during gradual freezing, but they are occluded inside the solid lattice, and their chemical shift is very sensitive to crystal structure. This makes it possible to study the effect of confinement on the solid phases. According to the measured 129Xe NMR spectra, possibly three different solid phases are observed from bulk liquid crystal in the used temperature region. The same is also seen from the samples containing larger pores (pore size larger than approximately 500 A), and the solid-solid phase-transition temperatures are the same. However, no first-order solid-solid phase transitions are observed from the smaller pores. Melting point depression, that is, the depression of solid-nematic transition temperature observed from the pores as compared with that in bulk LC, is seen to be very sensitive to the pore size, and it can be used for the determination of pore size of an unknown material.  相似文献   

11.
Near-critical CO2 in mesoporous silica studied by in situ FTIR spectroscopy   总被引:2,自引:0,他引:2  
Attenuated total reflection Fourier transform infrared spectroscopy was used to correlate the band shift of the nu2 vibrational band of carbon dioxide with the density of the fluid. Upon adsorption of CO2 on mesoporous silica and a nonporous SiO2 film, additional bands were detected due to interactions of CO2 with SiO2. Near the saturation pressure for the porous samples, the absorbance of the nu2 band increased strongly, which was concluded to be caused by liquidlike CO2 inside the pores. Integration of single-beam-sample-reference spectra between bulk CO2 and CO2 adsorbing on the mesoporous silica coated on one part of the internal reflection element revealed excess adsorption type isotherms with sharp maxima at 21 degrees C. A flatter curve shape could be observed at 25 degrees C, which allowed estimating the pore critical temperature. Moreover, the density of the fluid inside and outside the pores could be compared. Over the investigated ranges of pressure, temperature, and pore size, the results evidenced that the CO2 density was always higher in the silica pores than in the bulk, even under supercritical conditions. This has important consequences on the pressure dependence of dissolution power and diffusivity of fluids in mesoporous solids. An overview is given on the influences of fluid phase behavior in the bulk and in the pores at various conditions on solubility and diffusivity.  相似文献   

12.
TheporousionexchangeresinshavebecomeanimportantreactivepolarermaterialwhicharewidelyappliedinindustrialoperationsHowever,afewstudi..[l--3]reportedtheintraparticlediffusivityofporousionexchangers.Theionexchangedisplacementprocessonporousresinbedforseparationofrareearthsistheoneofthebestwaystoenhancetheeffectivityofthismethod.TounderstandthediffusionoftheionintheresinisveryavailablefolimproVingtheprocess.EXPERIMENTAL1.Pre--experimentsAllthereagentsusedareA.R.grade.152'154Euisusedasaradiot…  相似文献   

13.
Carbon aerogels (CA), having well-defined pore structure and different surface chemistry natures, were used to study the adsorption of supercritical N(2) and O(2) at 303 K. alpha(s), Langmuir, and DR methods were applied for interpretation of the experimental adsorption data. The surface chemistries were analyzed by XPS. The effect of the pore width and the surface chemistry on the supercritical gas adsorption is discussed. Ce, Zr-doped CA adsorbs more supercritical N(2) and O(2) than CA. This effect is unlikely to be due to the pore structure, since Ce, Zr-doped CA has wider micropores. The larger contribution of specific interactions between substrate sites and the adsorbate at ambient temperature appears to play a very significant role. Copyright 2001 Academic Press.  相似文献   

14.
Boehmite xerogels are prepared by hydrolysis of Al(OC4H9)3 followed by peptization with HNO3 (H+/Al = 0, 0.07, 0.2). XRD and TEM show that these gels are made of nanosized crystals (5-9 nm in width and 3 nm thick). According to the amount of acid, no significant differences are found in size and shape, but only in the spatial arrangement of the crystallites. Nitrogen adsorption-desorption isotherms of nonpeptized gels are of type IV, whereas isotherms of peptized gels are of type I. These isotherms are analyzed by the t-plot method. The majority of pore volume results from intercrystalline mesopores, but the peptized gels also contain intercrystalline micropores. The particle packing is very dense for the gel peptized with H+/Al = 0.2 (porosity = 0.26), but it is less dense in non-peptized gel (porosity = 0.44). Heating these gels under vacuum creates, from 250 degrees C onwards, an intracrystalline microporosity resulting from the conversion of boehmite into transition alumina. But heating also causes intercrystalline micropores collapsing. The specific surface area increases up to a limit temperature (300 degrees C for nonpeptized gels and 400 degrees C for peptized) beyond which sintering of the particles begins and the surface decreases. The PSD are calculated assuming a cylindrical pore geometry and using the corrected Kelvin equation proposed by Kruk et al. Peptized xerogels give a monomodal distribution with a maximum near 2 nm and no pores are larger than 6 nm. Nonpeptized gels have a bimodal distribution with a narrow peak near to 2 nm and a broad unsymmetrical peak with a maximum at 4 nm. Heating in air above 400 degrees C has a strong effect on the porosity. As the temperature increases, there is a broadening of the distribution and a marked decrease of small pores (below 3 nm). However, even after treatment at 800 degrees C, micropores are still present.  相似文献   

15.
We develop a novel theory to predict the density dependence of the diffusivity of simple fluids in a molecularly sized nanopore with diffusely reflecting walls, incorporating nearest neighbor intermolecular interactions within the framework of the recent oscillator model of low density transport arising from this laboratory. It is shown that when the pore width is about two molecular diameters, at sufficiently high densities these interactions lead to a repulsive inner core, as a result of which the diffusing molecules undergo more frequent reflections at the wall. This leads to a reduction in diffusivity with increase in density, which is consistent with molecular dynamics simulation results, and contrasts with the behavior in larger pores where the transport coefficient has previously been shown to increase with increase in density due to viscouslike intermolecular interactions. At low densities the behavior is opposite, with the inner core becoming more attractive with increase in density, which can lead to an increase in diffusivity. The theory consistently explains molecular dynamics simulation results when the inhomogeneous pair distribution function of moving particles in the pore is axially periodic, suggesting concerted motion of neighboring molecules. It is also shown that a potential of mean force concept is inadequate for describing the influence of intermolecular interactions on transport.  相似文献   

16.
A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.  相似文献   

17.
Grand-canonical transition-matrix Monte Carlo and histogram reweighting techniques are used herein to study the vapor-liquid coexistence properties of two-dimensional (2D) flexible oligomers with varying chain lengths (m = 1-8). The phase diagrams of the various 2D oligomers follow the correspondence state (CS) principle, akin to the behavior observed for bulk oligomers. The 2D critical density is not influenced by the oligomer chain length, which contrasts with the observation for the bulk oligomers. Line tension, calculated using Binder's formalism, in the reduced plot is found to be independent of chain length in contrast to the 3D behavior. The dynamical properties of 2D fluids are evaluated using molecular dynamics simulations, and the velocity and pressure autocorrelation functions are investigated using Green-Kubo (GK) relations to yield the diffusion and viscosity. The viscosity determined from 2D non-equilibrium molecular dynamics simulation is compared with the viscosity estimated from the GK relations. The GK relations prove to be reliable and efficient for the calculation of 2D transport properties. Normal diffusive regions are identified in dense oligomeric fluid systems. The influence of molecular size on the diffusivity and viscosity is found to be diminished at specific CS points for the 2D oligomers considered herein. In contrast, the viscosity and diffusion of the 3D bulk fluid, at a reduced temperature and density, are strongly dependent on the molecular size at the same CS points. Furthermore, the viscosity increases and the diffusion decreases multifold in the 2D system relative to those in the 3D system, at the CS points.  相似文献   

18.
Using dissipative particle dynamics, we investigate the behavior of a binary mixture, exhibiting demixing in a bulk phase, confined in slit-like pores with walls modified by the stripes of tethered brush of chains. Our main interest is to determine possible morphologies that can be formed inside the pore, depending on the geometrical parameters characterizing the system (the size of the pore and the width of the stripes). In order to describe the observed morphologies we calculate several characteristics, as the density and local temperature profiles, the radii of gyration for the attached polymers, and the minimum polymer-polymer distances in the direction parallel and perpendicular to the pore walls. The summary of our findings is presented as a sketch of the diagram of morphologies.  相似文献   

19.
高温下煤焦的碳微晶及孔结构的演变行为   总被引:1,自引:0,他引:1  
以贵州煤为原料,在热解温度950℃~1400℃制备了各种慢速和快速热解焦,主要对高温热解过程中煤焦的碳微晶和孔结构的演变行为进行了研究,同时也研究了高温气化过程中煤焦的孔结构变化规律。结果表明,慢速热解焦和快速热解焦的C和H含量明显不同;随热解温度的升高,煤焦的碳微晶结构向有序化方向发展,但慢速热解煤焦比快速热解煤焦的"石墨化"程度大;快速热解煤焦的微孔比表面积和微孔容积明显高于慢速热解煤焦,即快速热解煤焦的孔隙结构明显比慢速热解煤焦发达;在气化反应初期,煤焦的微孔比表面积下降,微中孔比表面积增加,反应后期煤焦的总比表面积快速下降。  相似文献   

20.
《Supramolecular Science》1998,5(3-4):267-273
Interaction of a molecule with micropore walls strongly depends on the micropore width. Molecules confined in the micropore tend to form an intermolecular structure inherent to each molecule/pore system in order to lower the whole molecular energy. Supercritical NO is adsorbed in micropores of zolite or activated carbon fiber in the form of a dimer at 303 K. The NO dimerization varies with the micropore width. CCl4 molecules only in pore of pore width =1.0 nm at 303 K form a plastic crystalline structure which is observed at 246–250 K in the bulk phase. H2O molecules are associated with each other to form an ordered assembly in carbon micropores at 303 K; the smaller the pore width, the more ordered the assembly structure. The presence of preadsorbed H2O noticeably enhances adsorption of supercritical CH4 in carbon micropores at 303 K due to methane nanohydrate formation, which has an optimum pore width of 1 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号