首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Cu(I) and Ag(I) can form with 1,1-dithio(seleno) ligands various types of clusters, the framework of which being maintained by the metal–chalcogen bonds provided by the bridging ligands. The metal centers are generally tricoordinated and consequently possess an accepting orbital of valence s and/or p character. There is no formal metal–metal bonding, but only weak d10–d10 interactions which favor the overlap between the metal accepting orbitals. Their bonding combinations are generally suited for interacting with the occupied valence orbitals of an encapsulated anion. Thus, many of these clusters are able to encapsulate anions, a situation which tends to stabilize the whole structure through building of significant host–guest bonding. Not only is the anion encapsulation effect to stabilize the cluster cage, but it can also significantly modify its structure, or act as a template in the stabilization of species which would not exist as empty clusters. This paper reviews the synthesis, structure and bonding of all the known clusters of d10 metals decorated with 1,1-dichalchogeno ligands and containing entrapped atomic anions. Their structures are analyzed with respect to size and shape. The photoluminescence properties of some of them are discussed.  相似文献   

2.
Metal atoms with a closed-shell electronic structure and positive charge as for example the Au(I), Pt(II), Ag(I), Tl(I) or Hg(II) atoms do not in some compounds repel each other due to the so-called metallophilic attraction (P. Pyykk?, Chem. Rev., 1997, 97, 597-636). Here we highlight the role of the Hg(II)Hg(II) metallophilic attraction between the consecutive metal-mediated mismatched base pairs of nucleic acids. Usually, the base stacking dominates the non-covalent interactions between steps of native nucleic acids. In the presence of metal-mediated base pairs these non-covalent interactions are enriched by the metal-base interactions and the metallophilic attraction. The two interactions arising due to the metal linkage of the mismatches were found in this study to have a stabilizing effect on nucleic acid structure. The calculated data are consistent with recent experimental observations. The stabilization due to the metallophilic attraction seems to be a generally important concept for the nucleic acids containing heavy metals with short contacts.  相似文献   

3.
Research in the field of supramolecular chemistry has rapidly grown in recent years due to the generation of fascinating structural topologies and their associated physical properties. In order to rationally synthesize such high-dimensionality systems, several different classes of non-covalent intermolecular interactions in the crystal engineering toolbox can be utilized. Among these, attractive metallophilic interactions, such as those observed for d(10) gold(i), have been increasingly harnessed as a design element to synthesize functional high-dimensional systems. This tutorial review will explore the methods by which gold(i) and other d(10) and d(8) metal centres have been employed to increase structural dimensionality via the formation of metal-metal interactions. Physical and optical properties associated with metallophilicity-based supramolecular structures will also be highlighted.  相似文献   

4.
Periodic trends in metal–metal interactions in edge-shared [M2Cl10]4− systems, involving the transition metals from groups 4 through 8 and electronic configurations ranging from d1d1 through d5d5, have been investigated by calculating metal–metal bonding and spin-polarization (exchange) effects using density functional theory. The trends found in this study are compared with those for the analogous face-shared [M2Cl9]3− systems reported in earlier work. Strong linear correlations between the metal–metal bonding and spin-polarization terms have been obtained for all groups considered. In general, spin polarization and electron localization are predominant in 3d–3d species whereas electron delocalization and metal–metal bonding are favoured in 5d–5d species, with more variable results observed for 4d–4d systems. As previously found for face-shared [M2Cl9]3− systems, the strong correlations between the metal–metal bonding and spin polarization energy terms can be related to the fact that both properties appear to be similarly affected by the changes in the metal orbital properties and electron density occurring within the dndn groups. A significant difference between the face-shared and edge-shared systems is that while the 4d metals in the former show a strong tendency for delocalized metal–metal bonded structures, the edge-shared counterparts display much greater variation with both metal–metal bonded and weakly coupled complexes observed. The tendency for weaker metal–metal interactions can be traced to the inability of the edge-shared bridging structure to accommodate the smaller metal–metal distances required for strong metal–metal bonding.  相似文献   

5.
The periodic trends in metal-metal interactions in even-electron and mixed-valence [M2Cl9]z- face-shared systems, involving transition metals in Groups 4 to 8 and electronic configurations ranging from d1d1 through to d5d5 and from d1d2 through to d4d5, have been investigated by calculating metal-metal bonding and spin polarization (exchange) effects using density functional theory. These two terms are in opposition to one another and their relative difference determines the extent to which the metal-based electrons are delocalized and thus the degree of metal-metal bonding. Remarkably strong linear correlations between the two terms, and between each term and the square of the spin density on the metal centres, have been obtained for all group and period series considered, and are discussed in terms of their dependence on the metal orbital properties and electron density.  相似文献   

6.
The heterotrinuclear chain complex Hg[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)](2) (dppm = Ph(2)PCH(2)PPh(2)) 1 which has a transoid arrangement of the phosphine donors was used as a versatile chelating metallodiphosphine ligand owing to the easy rotation of its metal core about the Fe-Hg sigma-bonds. Its reaction with the labile Pt(0) olefin complex [Pt(C(7)H(10))(3)] yielded [HgPt{Si(OMe)(3)}Fe(2)(CO)(6){Si(OMe)(3)}(mu-dppm)(2)] 5 which resulted, after coordination of the dangling phosphine donors to Pt, from an unprecedented intramolecular rearrangement involving a very rare example of silyl ligand migration between two different metal centers, and the first one in metal cluster chemistry. The major structural differences observed between the heterometallic complexes obtained from 1 and d(10) Cu(I), Pd(0), or Pt(0) precursors have been established by X-ray diffraction. The bonding situation in the silyl migrated Pt complex 5 was analyzed and compared to those in the isoelectronic, but structurally distinct complexes obtained from Cu(I) and Pd(0) precursors, [Hg{Fe[Si(OMe)(3)](CO)(3)(mu-dppm)}(2)Cu](+) (2) and [Hg{Fe[Si(OMe)(3)](CO)(3)(mu-dppm)}(2)Pd] (4), respectively, by means of extended Hückel interaction diagrams. DFT calculations then allowed the energy minima associated with the three structures to be compared for 2, 4, and 5. All three minima are in close competition for the Pd complex 4, but silyl migration is favored by approximately 10 kcal mol(-)(1) for 5, mainly due to the more electronegative character of Pt with respect to Pd.  相似文献   

7.
Su MD 《Inorganic chemistry》2005,44(13):4829-4833
In the past 30 years, substantial efforts and progress have been made in the design and synthesis of molecules containing tetracoordinated planar carbon, by overcoming the inherent preference for tetrahedral bonding. As a result, we have studied 12 organometallic molecules containing group 11 elements (i.e., M-X; M = Cu, Ag, and Au and X = I, II, III, and IV) using density functional theory to determine whether the central carbon atom exists in a planar geometry. Our theoretical findings suggest that in such M-X species, bonding interactions between the central carbon and the coinage metal ligands and between the metal ligands (i.e., metallophilic attractions) are both important in favoring planar-tetracoordinated carbon compounds over the corresponding tetrahedral structures. The compounds studied in this work are seen as excellent targets for chemical synthesis.  相似文献   

8.
This highlight focuses on various luminescent complexes with different transition metal centres of d(6), d(8) and d(10) electronic configurations. Through the systematic study on the variation of ligands, structural and bonding modes of different metal centres, the structure-property relationships of the various classes of luminescent transition metal complexes can be obtained. With the knowledge and fundamental understanding of their photophysical behaviours, their electronic absorption and luminescence properties can be fine-tuned. Introduction of supramolecular assembly with hierarchical complexity involving non-covalent interactions could lead to research dimensions of unlimited possibilities and opportunities. The approach of "function by design" could be employed to explore and exploit the potential applications of such luminescent transition metal complexes for future development of luminescent materials.  相似文献   

9.
Fifteen molecules containing the Au(I) species have been calculated by ab initio HF and MP2 methods and by five different density functional approaches. The aurophilic Au(d10)-Au(d10) bonding mechanism has been investigated. Both, one-electron interactions (i.e., electrostatic, polarization, charge transfer, and orbital interference) and two-electron effects (i.e., correlation, dispersion) contribute significantly to the so-called 'secondary' or metallophilic bonds representing the Au-Au interaction. Second, the applicability of density functional approaches to this type of bonding has been tested. It is well-known that present day density functionals are not yet designed to simulate the long-range London dispersion forces between nonoverlapping systems, whereas they approximately reproduce the short range dynamical electron correlations of strongly overlapping chemically bonded nondegenerate species. It is found here empirically for the investigated groups of gold(I) cluster compounds that simple local density functionals (LDF) of the Slater (or Slater plus Vosko) type yield rather reasonable estimates for the equilibrium distances, and (on the average) also for the aurophilic interaction energies, though with rather large standard deviations. Still LDF are useful for survey investigations of Au cluster compounds. Common gradient corrected DF are not recommended here, nor are the large core pseudopotentials for Au.  相似文献   

10.
Synthesis, structure, bonding, and photoluminescence studies of a pair of neutral dimeric silver and gold complexes of a N/O-functionalized N-heterocyclic carbene ligand exhibiting closed-shell d10...d10 argentophilic and aurophilic interactions, are reported. In particular, dimeric complexes of the type {[1-(benzyl)-3-(N-tert-butylacetamido)imidazol-2-ylidene]MCl}2 [M = Ag (2); Au (3)] displayed attractive metallophilic interaction in the form of a close ligand-unsupported metal...metal contact [3.1970(12) A in 2; 3.2042(2) A in 3] as observed from X-ray diffraction study and also was further verified by low temperature photoluminescence study at 77 K that showed the characteristic emission [527 nm for 2; 529 nm for 3] owing to the metal...metal interaction. The nature of the metallophilic interaction in these complexes was further probed using computational studies that estimated the metal...metal interaction energy to be 12.8 (2) and 8.6 kcal/mol (3). Notably, the argentophilic interaction was found to be stronger than the aurophilic interaction in this series of neutral dimeric complexes. The complexes 2 and 3 were synthesized sequentially, with the silver 2 complex prepared by the reaction of the 1-(benzyl)-3-(N-tert-butylacetamido)imidazolium chloride with Ag2O in 66% yield, while the gold 3 complex was obtained by the transmetallation reaction of the silver 2 complex with (SMe2)AuCl in 86% yield.  相似文献   

11.
Luminescent metal complexes are key materials for several applications such as lighting, analytical probes, and lasers. In many cases compounds based on precious (i.e. platinum group) and rare earth metals are utilized, which are often rather expensive and environmentally problematic. In recent years, interest is growing in luminescent complexes based on less traditional but more abundant and cheaper metal elements. In this scenario compounds of metals with a d10 electronic configuration are playing a prominent role, also thanks to the versatility of their luminescent levels which can be of ligand centred, charge transfer or, in the case of polynuclear compounds, even metal-centred nature. Here we focus on some selected examples of Cu(I), Ag(I), Au(I), Zn(II) and Cd(II) luminescent complexes to suggest some possible routes towards promising and unprecedented emitting materials.  相似文献   

12.
Noble metals meet a heavyweight: A pincer ligand brings together bismuth with gold and platinum, so that metallophilic interactions are established. According to DFT calculations, these interactions contain dominant metal→bismuth contributions.  相似文献   

13.
Isostructural dinuclear Pd and Pt complexes that exhibit unique d(8)-d(8) interactions between dicationic metal centers are reported. These metal-metal interactions are not supported by any bridging ligands and suggest a significant metal-metal bonding character for both Pd and Pt systems.  相似文献   

14.
We report on the heterobimetallic system, Eu[Ag(x)Au(1-x)(CN)(2)](3) (x = 0-1) in which sensitization of europium luminescence occurs by energy transfer from [Ag(x)Au(1-x)(CN)(2)](-) donor excited states. The donor states have energies which are tunable and dependent on the Ag/Au stoichiometric ratio. These layered systems exhibit interesting properties, one of which is their emission energy tunability when excited at different excitation wavelengths. In this paper, we report on their use as donor systems with Eu(III) ions as acceptor ions in energy transfer studies. Luminescence results show that the mixed metal dicyanides with the higher silver loading have a better energy transfer efficiency than the pure Ag(CN)(2)(-) and Au(CN)(2)(-) donors. The better energy transfer efficiency is due to the greater overlap between the donor emission and acceptor excitation. Additionally, more acceptor states are available in the high silver loading mixed metal Eu(III) complexes. The results from a crystal structure determination and Raman experiments are also presented in this paper and provide information about metallophilic interactions in the closed-shell d(10) metal-metal [Ag(x)Au(1-x)(CN(2)](-) dicyanide clusters.  相似文献   

15.
The distinction between valence electrons and essentially inactive core electrons is the basis of many classifying concepts in chemistry. However, it has recently been recognized that this is an oversimplification and should, at least in some areas of chemistry, be modified. Many cases are known where cations with closed d10 configurations are subject to homoatomic interactions that influence structure and properties. A characteristic and surprisingly uniform structural feature (e.g., of a number of compounds containing monovalent coinage metals) is a clusterlike assembly of d10 cations that corresponds in geometry and bond lengths to fragments of the metal structures themselves. Further evidence for a special type of bonding in such compounds is provided by their physical properties; for example, the absorption in the UV/VIS region shows a drastic redshift and the compounds are often conductors or semiconductors. The d electrons in such cases have obviously lost their pure “core” nature. All bonding models so far proposed for such systems involve mixing of higher orbitals.  相似文献   

16.
Metallophilic interactions are increasingly recognized as playing an important role in molecular assembly, catalysis, and bio‐imaging. However, present knowledge of these interactions is largely derived from solid‐state structures and gas‐phase computational studies rather than quantitative experimental measurements. Here, we have experimentally quantified the role of aurophilic (AuI???AuI), platinophilic (PtII???PtII), palladophilic (PdII???PdII), and nickelophilic (NiII???NiII) interactions in self‐association and ligand‐exchange processes. All of these metallophilic interactions were found to be too weak to be well‐expressed in several solvents. Computational energy decomposition analyses supported the experimental finding that metallophilic interactions are overall weak, meaning that favorable dispersion and orbital hybridization contributions from M???M binding are largely outcompeted by electrostatic or dispersion interactions involving ligand or solvent molecules. This combined experimental and computational study provides a general understanding of metallophilic interactions and indicates that great care must be taken to avoid over‐attributing the energetic significance of metallophilic interactions.  相似文献   

17.
Metal nanoclusters have a certain rigidity due to their specific coordination patterns and shapes; thus, they face extreme difficulty in folding into a specific direction to form a double-helix structure and in further interconnecting to form metal–helix frameworks (MHFs). To date, no MHFs have been produced by the formation of heterometallic clusters. Selecting the appropriate “bonding molecules” to bond metal nanoclusters in a specific multiple direction is one of the most effective strategies for designing synthetic MHFs. In this study, we realized for the first time the control of different orientations of μ3-NO3 to join heterometallic clusters (Cu10Dy2) and subsequently form a left-handed double helix chain, which further joins to form MHFs. In the structure of the MHFs, four different directions of bridging μ3-NO3 exist, three of which are involved in the linkage of the double-helix chain. Each μ3-NO3 is connected to three adjacent Cu10Dy2. Herein, we extend a new method for designing synthetic double-helix structures and MHFs, thereby further laying the foundation for the development of similar DNA double-helix structures and nucleic acid secondary structures in vitro.  相似文献   

18.
The first examples of gold(I) trimethylsilylchalcogenolate complexes were synthesized and their reactivity showcased in the preparation of a novel gold–copper–sulfur cluster [Au4Cu4S4(dppm)2] (dppm=bis(diphenylphosphino)methane). The unprecedented structural chemistry of this compound gives rise to interesting optoelectronic properties, including long‐lived orange luminescence in the solid state. Through time‐dependent density functional theory calculations, this emission is shown to originate from ligand‐to‐metal charge transfer facilitated by Au???Cu metallophilic bonding.  相似文献   

19.
We report a homoleptic Au-Cu alkynyl cluster that represents an unexplored class of luminescent materials with stimuli-responsive photophysical properties. The bimetallic complex formulated as [Au(2)Cu(2)(C(2)OHC(5)H(8))(4)](n) efficiently self-assembles from Au(SC(4)H(8))Cl, Cu(NCMe)(4)PF(6), and 1-ethynylcyclopentanol in the presence of NEt(3). This compound shows remarkably diverse polymorphism arising from the modulation of metallophilic interactions by organic solvents. Four crystalline forms, obtained from methanol (1a); ethanol, acetone, or choloroform (1b); toluene (1c); and diethyl ether or ethyl acetate (1d), demonstrate different photoluminescent characteristics. The solid-state quantum yields of phosphorescence (Φ) vary from 0.1% (1a) to 25% (1d), depending on the character of intermetallic bonding. The structures of 1b-d were determined by single-crystal X-ray diffraction. The ethanol (1b, Φ = 2%) and toluene (1c, Φ = 10%) solvates of [Au(2)Cu(2)(C(2)OHC(5)H(8))(4)](n) adopt octanuclear isomeric structures (n = 2), while 1d (Φ = 25%) is a solvent-free chain polymer built from two types of Au(4)Cu(4) units. Electronic structure calculations show that the dramatic enhancement of the emission intensity is correlated with the increasing role of metal-metal bonding. The latter makes the emission progressively more metal-centered in the order 1b < 1c < 1d. The metallophilic contacts in 1a-d show high sensitivity to the vapors of certain solvents, which effectively induce unusual solid-state isomerization and switching of the absorption and luminescence properties via non-covalent interactions. The reported polymorphic material is the first example of a gold(I) alkynyl compound demonstrating vapochromic behavior.  相似文献   

20.
In the last few decades, “unusual” noncovalent interactions like anion‐π and halogen bonding have emerged as interesting alternatives to the ubiquitous hydrogen bonding in many research areas. This is also true, to a somewhat lesser extent, for chalcogen bonding, the noncovalent interaction involving Lewis acidic chalcogen centers. Herein, we aim to provide an overview on the use of chalcogen bonding in crystal engineering and in solution, with a focus on the recent developments concerning intermolecular chalcogen bonding in solution‐phase applications. In the solid phase, chalcogen bonding has been used for the construction of nano‐sized structures and the self‐assembly of sophisticated self‐complementary arrays. In solution, until very recently applications mostly focused on intramolecular interactions which stabilized the conformation of intermediates or reagents. In the last few years, intermolecular chalcogen bonding has increasingly also been exploited in solution, most notably in anion recognition and transport as well as in organic synthesis and organocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号