首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Photo-responsive molecules have been studied extensively because of their light irradiation abilities that enable modulation of certain physical and chemical properties in emerging molecular electronic and photonic devices. For advanced photonic applications, photochromic metal complexes that have photochromic units as the photo-responsive ligand are highly desirable, as they allow improvement of the photochromic properties and their photo-switching functionality. This article focuses on recent progress in luminescent metal complexes with photochromic units. Luminescence-switching properties of photochromic metal complexes depend on characteristic electronic transitions. The electronic transitions of photochromic metal complexes can be divided into three categories: (1) π–π* transition of the ligand, (2) metal to ligand charge transfer (MLCT) in transition-metal complex, and (3) ff transition in lanthanide complex. Luminescence modulation using various metal complexes with photochromic units has been studied extensively in recent years, and various applications for future molecular switching devices are expected in the field of advanced photonics. Based on the literature and our studies on luminescent metal complexes with photochromic units, we report on the recent progress of luminescent metal complexes with photochromic units.  相似文献   

2.
The rich photophysical properties of luminescent inorganic and organometallic transition metal complexes, such as their intense, long-lived, and environment-sensitive emission, render them excellent candidates for biological and cellular studies. In this Perspective, we review examples of biological probes derived from luminescent transition metal complexes with a d(6), d(8), or d(10) metal center. The design of luminescent covalent labels and noncovalent probes for protein molecules is discussed. Additionally, the recent applications of these complexes as cellular probes and bioimaging reagents are described. Emphasis is put on the structural features, photophysical behavior, biomolecular interactions, cellular uptake, and intracellular localization properties of luminescent transition metal complexes.  相似文献   

3.
Luminescent metal complexes are key materials for several applications such as lighting, analytical probes, and lasers. In many cases compounds based on precious (i.e. platinum group) and rare earth metals are utilized, which are often rather expensive and environmentally problematic. In recent years, interest is growing in luminescent complexes based on less traditional but more abundant and cheaper metal elements. In this scenario compounds of metals with a d10 electronic configuration are playing a prominent role, also thanks to the versatility of their luminescent levels which can be of ligand centred, charge transfer or, in the case of polynuclear compounds, even metal-centred nature. Here we focus on some selected examples of Cu(I), Ag(I), Au(I), Zn(II) and Cd(II) luminescent complexes to suggest some possible routes towards promising and unprecedented emitting materials.  相似文献   

4.
Under certain circumstances, metal complexes with a formal d(0) electronic configuration may exhibit structures that violate the traditional structure models, such as the VSEPR concept or simple ionic pictures. Some examples of such behavior, such as the bent gas-phase structures of some alkaline earth dihalides, or the trigonal prismatic coordination of some early transition metal chalcogenides or pnictides, have been known for a long time. However, the number of molecular examples for "non-VSEPR" structures has increased dramatically during the past decade, in particular in the realm of organometallic chemistry. At the same time, various theoretical models have been discussed, sometimes controversially, to explain the observed, unusual structures. Many d(0) systems are important in homogeneous and heterogeneous catalysis, biocatalysis (e.g. molybdenum or tungsten enzymes), or materials science (e.g. ferroelectric perovskites or zirconia). Moreover, their electronic structure without formally nonbonding d orbitals makes them unique starting points for a general understanding of structure, bonding, and reactivity of transition metal compounds. Here we attempt to provide a comprehensive view, both of the types of deviations of d(0) and related complexes from regular coordination arrangements, and of the theoretical framework that allows their rationalization. Many computational and experimental examples are provided, with an emphasis on homoleptic mononuclear complexes. Then the factors that control the structures are discussed in detail. They are a) metal d orbital participation in sigma bonding, b) polarization of the outermost core shells, c) ligand repulsion, and d) pi bonding. Suggestions are made as to which of the factors are the dominant ones in certain situations. In heteroleptic complexes, the competition of sigma and pi bonding of the various ligands controls the structures in a complicated fashion. Some guidelines are provided that should help to better understand the interrelations. Bent's rule is of only very limited use in these types of systems, because of the paramount influence of pi bonding. Finally, computed and measured structures of multinuclear complexes are discussed, including possible consequences for the properties of bulk solids.  相似文献   

5.
Cleavage of cyanide is more difficult to achieve compared to dinitrogen and carbon monoxide, even though these species contain triple bonds of greater strength. In this work, we have used computational methods to investigate thermodynamic and mechanistic aspects of the C-N bond cleavage process in [L(3)M-CN-M'L(3)] systems consisting of a central cyanide unit bound in an end-on fashion to two terminal metal tris-amide complexes. In these systems, [M] is a d(3) transition metal from the 3d, 4d, 5d, or 6d series and groups 4 through 7, and [L] is either [NH(2)], [NMe(2)], [N(i)PrPh], or [N(t)BuAr]. A comparison of various models for the experimentally relevant [L(3)Mo-CN-MoL(3)] system has shown that while the C-N cleavage step appears to be an energetically favourable process, a large barrier exists for the dissociation of [L(3)Mo-CN-MoL(3)]((-)) into [L(3)Mo-C]((-)) and [N-MoL(3)], which possibly explains why C-N bond scission is not observed experimentally. The general structural, bonding, and thermochemical trends across the transition metal series investigated, indicate that the systems exhibiting the greatest degree of C-N activation, and most favourable energetics for C-N cleavage, also possess the most favourable electronic properties, namely, a close match between the relevant π-like orbitals on the metal-based and cyanide fragments. The negative charge on the cyanide fragment leads to significant destabilization of the π* level which needs to be populated through back-donation from the metal centres in order for C-N bond scission to be achieved. Therefore, metal-based systems with high-lying d(π) orbitals are best suited to C-N cleavage. In terms of chemical periodicity, these systems can be identified as the heavier members within a group and the earlier members within a period. As a consequence, Mo complexes are not well suited to cleaving the C-N bond, whereas the Ta analogues are the most favourable systems and should, in principle, be capable of cleaving cyanide under relatively mild conditions. An important conclusion from this work is that a successful strategy for achieving cleavage of multiply-bonded, and relatively unreactive, molecular fragments, may simply lie in tuning the electronic structures and orbital interactions by judicious choice of metal sites and ligand groups.  相似文献   

6.
We have applied time dependent density functional theory to study excited state structures of the tetroxo d(0) transition metal complexes MnO(4)(-), TcO(4)(-), RuO(4), and OsO(4). The excited state geometry optimization was based on a newly implemented scheme [Seth et al. Theor. Chem. Acc. 2011, 129, 331]. The first excited state has a C(3v) geometry for all investigated complexes and is due to a "charge transfer" transition from the oxygen based HOMO to the metal based LUMO. The second excited state can uniformly be characterized by "charge transfer" from the oxygen HOMO-1 to the metal LUMO with a D(2d) geometry for TcO(4)(-), RuO(4), and OsO(4) and two C(2v) geometries for MnO(4)(-). It is finally found that the third excited state of MnO(4)(-) representing the HOMO to metal based LUMO+1 orbital transition has a D(2d) geometry. On the basis of the calculated excited state structures and vibrational modes, the Franck-Condon method was used to simulate the vibronic structure of the absorption spectra for the tetroxo d(0) transition metal complexes. The Franck-Condon scheme seems to reproduce the salient features of the experimental spectra as well as the simulated vibronic structure for MnO(4)(-) generated from an alternative scheme [Neugebauer J. J. Phys. Chem. A 2005, 109, 1168] that does not apply the Franck-Condon approximation.  相似文献   

7.
L(2,3)-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru(III)(2)O(H(2)O)(2)(bpy)(4)](4+) water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH(3))(6)](3+) model complex show considerably different splitting of the Ru L(2,3) absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L(2,3)-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L(2,3)-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH(3))(6)](3+) model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.  相似文献   

8.
This review describes the design and synthesis of a number of luminescent transition metal alkynyls by this laboratory. The luminescence properties of the complexes have been studied and their emission origin elucidated. Some of these complexes have been shown to be ideal building blocks for the design and construction of luminescent molecular rods and materials, in which the luminescence properties can be readily tuned by changing the alkynyl ligands. Some of them also exhibited luminescence switching behaviour with the “ON-OFF” luminescence states modulated by redox processes, metal ion-binding or solvent composition.  相似文献   

9.
Phenoxide bridged later first row transition metal(II) complexes have been prepared by the interaction of later 3d transition metal(II) chlorides with tetranucleating compartmental Schiff base ligand system derived from 2,6-diformyl-4-methylphenol, p-phenylenediamine and 2-hydrazinobenzothiazole. Ligand and complexes were characterized by analytical, spectral (IR, UV-visible, ESR, FAB-mass and fluorescence), magnetic and thermal studies. All complexes are found to have octahedral geometry. The mutual influence of metal centres in terms of cooperative effect on the electronic, magnetic, electrochemical and structural properties was investigated. The Schiff base and its complexes have been screened for their antibacterial (against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa) and antifungal activities (against Aspergillus niger, and Candida albicans).  相似文献   

10.
We report the first implementation of the calculation of electronic g-tensors by density functional methods with hybrid functionals. Spin-orbit coupling is treated by the atomic meanfield approximation. g-Tensors for a set of small main group radicals and for a series of ten 3d and two 4d transition metal complexes have been compared using the local density approximation (VWN functional), the generalized gradient approximation (BP86 functional), as well as B3-type (B3PW91) and BH-type (BHPW91) hybrid functionals. For main group radicals, the effect of exact-exchange mixing is small. In contrast, significant differences between the various functionals arise for transition metal complexes. As has been shown previously, local and in particular gradient-corrected functionals tend to underestimate the "paramagnetic" contributions to the g-tensors in these cases and thereby recover only about 40-50% of the range of experimental g-tensor components. This is improved to ca. 60% by the B3PW91 functional, which also gives slightly reduced standard deviations. The range increases to almost 100% using the half-and-half functional BHPW91. However, the quality of the correlation with experimental data worsens due to a significant overestimate of some intermediate g-tensor values. The worse performance of the BHPW91 functional in these cases is accompanied by spin contamination. Although none of the functionals tested thus appears to be ideal for the treatment of electronic g-tensors in transition metal complexes, the B3PW91 hybrid functional exhibited the overall most satisfactory performance. Apart from the validation of hybrid functionals, some aspects in the treatment of spin-orbit contributions to the g-tensor are discussed.  相似文献   

11.
A series of transition metal complexes involving non-innocent o-dithiolene and o-phenylenediamine ligands has been characterized in detail by various spectroscopic methods like magnetic circular dichroism (MCD), absorption (abs), resonance Raman (rR), electron paramagnetic resonance (EPR), and sulfur K-edge X-ray absorption spectroscopies. A computational model for the electronic structure of the complexes is then proposed based on the density functional theory (DFT) or ab-initio methods, which can successfully account for the observed trends in the experimental spectra (MCD, rR, and abs) of the complexes. Based on these studies, the innocent vs non-innocent nature of the ligands in a given transition metal complex is found to be dependent on the position of the central metal ion in the periodic table, its effective nuclear charge in interplay with relativistic effects.  相似文献   

12.
A series of luminescent transition metal complexes using the pH-sensitive ligand 5-carboxy-1,10-phenanthroline has been synthesized and characterized. The complexes, based on Ru(II) and Re(I), show monotonic changes in both luminescent intensity and lifetime with pH values over the range 2 < pH < 9. The impact of various structural features on both the range of pH sensitivity and dynamic response was studied using both intensity and lifetime measurements. It was possible to predictably tune the pH sensitivity range over about 1.5 pKa units. While significant variation in the dynamic response range was observed, the correlation with structural features needs further study.  相似文献   

13.
Resonance Raman spectra of heteroatom substituted ruthenium(II)-allenylidene complexes, obtained by irradiation into the second electronic absorption band, clearly prove the d(Ru)→π*(CCC) MLCT character of the corresponding electronic transition. The complexes are not significantly luminescent at room temperature, but in solvent glasses at 77 K, emission is observed. Only some of the complexes studied are luminescent upon irradiation into their lowest-energy absorption band. The striking finding of this study is that almost all complexes are luminescent on irradiation into their second absorption band. The emission was shown to originate from a higher lying 3MLCT state, which shows that internal conversion to the lowest excited state is very inefficient in these complexes.  相似文献   

14.
A series of metal naphthalocyanine complexes (M = TiO2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Ru2+) have been investigated using density functional theory (DFT) and time-dependent DFT methods in vacuo and in the solvent dimethylsulfoxide in order to evaluate the influence of the different metal atoms on the geometries and optical properties of their complexes. The optimized geometries for the complexes without an axial ligand exhibit planar conformations. Most of the absorption bands of the metal complexes are blue-shifted compared to those of the metal-free naphthalocyanine, both in vacuo and in the solvent. The various transition metals could gradually tune the electronic and spectroscopic properties of their naphthalocyanine complexes, which may provide valuable information for tuning the properties of naphthalocyanine complexes for various applications.  相似文献   

15.
Transition metal phthalocyanines (MPc's) are an interesting class of material, and their magnetic and electronic properties are determined by the orbital occupation of the transition metal 3d orbitals incorporated in the molecules center. Thus, the ground state configuration of the transition metal center is very important for a complete understanding of these materials. We present experimental data taken using x-ray absorption and x-ray photoemission spectroscopy together with a theoretical interpretation of MPc series with M=Zn, Cu, Ni, Co, Fe, and Mn. The combination of these methods allows us to narrow down possible dominating ground state configurations and shed a brighter light on the electronic structure of these complexes.  相似文献   

16.
The phenomenon of agostic interactions is reviewed and the nature of the interaction is revisited. A historical perspective is followed by an overview of experimental techniques used to diagnose agostic behavior, and previous interpretations of agostic bonding are presented. A series of simple metal alkyl complexes is considered and a new model for the phenomenon in d(0) systems is developed which sets them apart from agostic late-transition-metal complexes. Factors such as the valence electron count and coordination number of the metal center are revealed to be unimportant in facilitating the interaction in most d(0) systems. The charge density distribution in several transition-metal alkyl complexes is explored by experimental and theoretical techniques, including the powerful "Atoms in Molecules" approach. Local charge concentrations are shown to play an important role in the agostic interaction. Finally, we demonstrate for the first time a way to manipulate and control the magnitude and disposition of such local charge concentrations, and hence the strength of agostic interactions in d(0) metal alkyl complexes.  相似文献   

17.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry was used to characterize the complexes formed between open-chain piperazine-containing ligands and transition metal salts (Cobalt, Copper, Zinc, and Cadmium as chlorides, nitrates, and acetates). Only single-charged complexes were observed, formed of one ligand (L) and mainly one metal ion (M). Since the net charge of the complexes was one, a counterion (X) was attached to some of the complexes, with formation of [L + M + X]+ complexes, and a proton was lost from others, as in [L - H + M]+ complexes. In most cases the composition of the complexes was more dependent on the ligand than the metal salt. Collision-induced dissociation measurements showed that complexes with related composition often differed in structure, or that interactions between the ligand and the metal ion were not alike. The metal ion influenced considerably the fragmentation pathways of the ligands, so that the fragmentation products could be used to deduce the binding sites of the metal. The variations observed in fragmentation behavior of complexes possessing the same ligand but different metal ions can mostly be explained by the ionic radius and electronic configuration of the metal ion. The results indicated a preference of the piperazine ring of the coordinated ligand for the boat conformation.  相似文献   

18.
This Perspective discusses the synthesis and reactivity of low-coordinate transition metal diaryl complexes. The development of sterically demanding ligands, in particular m-terphenyls is facilitating the isolation of complexes featuring two-coordinate open-shell transition metal centres. These coordinatively unsaturated complexes are now being investigated for their reaction chemistry, which is not only contributing to the elucidation of the structure and bonding within these systems but is also leading to the formation of novel compounds.  相似文献   

19.
A new model is proposed for the role of the d electrons in chemisorption and catalysis on transition metal surfaces. In this model, the d electrons remain localized on the atoms and do not participate in forming dsp hybrid bonds with the adsorbate. However, electrons in doubly-occupied d orbitals can be promoted to anti-bonding or non-bonding valence orbitals. These additional electronic configurations help increase the binding energy of the adsorbate and help stabilize reaction intermediates. This effect is enhanced by spatial rotation of the singly-occupied d orbitals which become perpendicular to the adsorbate. The singly-occupied d orbitals are also able to recouple their spins during the reaction, allowing the reaction to proceed on otherwise forbidden reaction paths.  相似文献   

20.
The relationship between structure and bonding in actinide 6d(0)5f(0) MX(6)(q)() complexes (M = Th, Pa, U, Np; X = H, F; q = -2,-1, 0, +1) has been studied, based on density functional calculations with accurate relativistic actinide pseudopotentials. The detailed comparison of these prototype systems with their 5d(0) transition metal analogues (M = Hf, Ta, W, Re) reveals in detail how the 5f orbitals modify the structural preferences of the actinide complexes relative to the transition metal systems. Natural bond orbital analyses on the hydride complexes indicate that 5f orbital involvement in sigma-bonding favors classical structures based on the octahedron, while d orbital contributions to sigma-bonding favor symmetry lowering. The respective roles of f and d orbitals are reversed in the case of pi-bonding, as shown for the fluoride complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号