首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用固态反应法合成了名义组分为SmxC60 (x =1 ,2 ,...,6 )的插入化合物 ,获得了具有正交结构的Sm2 .75C60 超导相和具有体心立方结构的Sm6C60 相。较高Sm浓度的SmxC60 (x≥ 3 )的拉曼谱峰的展宽与减弱可归因于C60 分子的畸变和电 -声子相互作用。拉曼光谱的结果还表明 ,尽管SmxC60 (x =2 ,3 ,4,5 )暴露空气后转变为非晶态 ,但C60 分子畸变反而减小 ;在Sm6C60 非晶态中C60 分子即使存在 ,但其畸变仍然很大 ,或C60 分子已遭到破坏并形成了某种非晶碳化物  相似文献   

2.
Raman spectra of Ba6−3xSm8+2xTi18O54 solid solution were investigated as the function of x and sintering time. Reasonable explanations were provided about the Raman shifts and their intensities at 1013, 590, 751, 280, 232 cm−1. 1013 cm−1 demonstrates the existence of BaCO3 phase in solid solution, 590 cm−1 is the symmetric stretching mode of the basal oxygens of the octahedral; 280 and 232 cm−1 are the symmetric stretching modes resulted from the tilt of octahedral when large cation sites are Sm3+ and Ba2+. The shoulder peak appearing around 302 cm−1 is related to the vacancy produced by the unequal valence of Sm3+ and Ba2+.  相似文献   

3.
Bi1−xDyxFeO3 (x=0.0, 0.03, 0.05, 0.07, 0.10 and 0.12) ceramics were synthesized by solid state reaction method. Effects of Dy substitution on structural distortion, magnetic and optical properties of BiFeO3 were examined by X-ray diffraction, Raman and UV–Visible spectroscopy. The samples were found to crystallize in rhombohedral structure of BiFeO3 with R3c space group. The reduction in lattice parameters and unit cell volume indicate the distortion in FeO6 octahedra of the rhombohedral structure without any signature of phase transformation up to x=0.12. The predictable weak ferromagnetic hysteresis loops can be observed in the Dy doped samples with maximum remnant magnetization of 0.2103 emu/g for x=0.12. The weak ferromagnetism is ascribed to the suppressed spiral spin structure and magnetically active characteristic of Dy3+ ions together with ferromagnetic coupling between Dy3+ and Fe3+ ions. With optical band gap in visible region, Dy doped BiFeO3 ceramics are potential material for optoelectronic device and solar cell applications.  相似文献   

4.
用紫外光电子能谱和同步辐射光电子能谱研究了Sm掺杂C60薄膜的价带电子结构.Sm的价电子大部分转移给C60,化学键以离子性为主.对于任何化学配比都没有观察到费米边,所以Sm富勒烯超导相在室温下为半导体性质.获得了很接近单相Sm2.75C60的样品在费米能级附近的电子态密度分布.固溶相的光电子发射与Sm2.75C60有明显区别.SmxC60关键词: 60的Sm填隙化合物')" href="#">C60的Sm填隙化合物 价带光电子能谱 电子结构  相似文献   

5.
The X-ray diffraction (XRD), magnetic susceptibility and electron spin resonance (ESR) measurements have been carried out for NaxC60. The XRD profiles with x<4 can be assigned to a face-centered cubic (fcc) lattice, while those with 4≦x to a hexagonal one. The temperature dependence of magnetic susceptibility χ for NaxC60 using SQUID was fitted to the Curie law, and estimated temperature-independent component χ0. The composition x dependence of the χ0 for NaxC60 shows two maxima at around x=3 and x=10, and minimum at x=6. The absence of Pauli contribution at x=6 was confirmed using ESR. A trace of superconducting transition at 14 K has been found for some NaxC60 specimens with 8<x<9.  相似文献   

6.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

7.
At room temperature and for x0 ~ 0.43, the system Sm1?xLaxAlO3 undergoes a first order phase transition in which an orthorhombic structure transforms into a rhomboedral structure as x increases. This phase transition was investigated by Raman scattering experiments on polycrystalline compounds in the range 0 ? x ? 1. The dependence of low frequency modes on x is reported and compared with their well known temperature dependence. Soft modes have been observed in the orthorhombic (D2h16) and rhomboedral (D3d6) phases. It was found that the first order phase transition is probably driven by a double degenerate mode whose two components in the low symmetry phase display a linear composition dependence of their squared frequencies. The source of anomalous behaviour of Raman bands near the phase transition is discussed.  相似文献   

8.
Samarium doped zinc-phosphate glasses having composition Sm2O3 (x)ZnO(60−x) P2O5 (40) (where x=0.1-0.5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been calculated. The values of density range from 3.34 to 3.87 gm/cm3 and those of molar volume range from 27.62 to 31.80 cm−3. The optical absorbance studies were carried out on these glasses to measure their energy band gaps. The absorption spectra of these glasses were recorded in UV-visible region. No sharp edges were found in the optical spectra, which verifies the amorphous nature of these glasses. The optical band gap energies for these glasses were found to be in the range of 2.89-4.20 eV. The refractive index and polarizability of oxide ion have been calculated by using Lorentz-Lorentz relations. The values of refractive index range from 2.13 to 2.42 and those of polarizability of oxide ion range from 6.51×10−24 to 7.80×10−24 cm3.  相似文献   

9.
The interplay between the superconducting phase and spin density wave order phase was studied. We report the magnetic and superconducting properties of the hole-doped FeAs-based superconducting compound La0.87−xLnxSr0.13FeAsO (Ln=Sm, Gd, Dy; 0≤x≤0.06). Both resistivity and magnetic susceptibility measurements show that the superconducting transition temperature decreases with increase in composition of magnetic ions. The hysteresis loop of the La0.87−xLnxSr0.13FeAsO sample shows a superconducting hysteresis in addition to a paramagnetic background. The experiment demonstrates that the magnetism and superconductivity coexist in hole-doped FeAs-based superconducting compounds. Among these three magnetic rare-earth elements, the influence of Dy3+ doping on superconductivity is more evident than that of Gd3+ doping, while the influence of Sm3+ doping is the weakest. The trend is consistent with the variation of the lattice parameter along c-axis.  相似文献   

10.
New triethylammonium salts: [(C2H5)3NH]SbCl6 (TCA) and [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl (TCAT) have been synthesized. The compounds crystallise in monoclinic symmetry: space groups P21/n and P21/c, for TCA at 293 K and TCAT at 100 K, respectively. The crystal structure of [(C2H5)3NH]SbCl6 consists of discrete ionic pairs—triethylammonium cations and hexachloroantimonate anions—linked via the bifurcated N-H?Cl hydrogen bonds. The crystal structure of [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl is composed of three symmetrically independent triethylammonium cations, chlorine anion and two symmetrically independent hexachloroantimonate anions. TCA undergoes a structural phase transition at 336 K (on heating) into the orthorhombic C222 space group, whereas TCAT reveals a structural phase transition at 332 K. The phase transitions are of the first order type. TCA shows a ferroelastic domain structure below 336 K. Differential scanning calorimetry, dilatometric, dielectric dispersion and Raman scattering measurements have been used to study the phase transition mechanisms in these triethylammonium salts.  相似文献   

11.
Structural, electronic and thermodynamic properties of SrTe and BaTe compounds and their ternary mixed crystals BaxSr1−xTe in the rock-salt structure have been studied with density functional theory (DFT), whereas the optical properties have been obtained by using empirical methods such as the modified Moss relation. The exchange-correlation potential was calculated using the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) of Teter–Pade (TP). In the present work, we used the virtual-crystal approximation (VCA) to study the effect of composition (x). The calculated lattice parameters at equilibrium volume and the bulk modulus for x=0 and x=1 are in good agreement with the literature data. Furthermore, the BaxSr1−xTe alloys are found to be an indirect band gap semiconductor. In addition, we have also predicted the heat capacities (CV), the entropy(S), the internal energy (U) and the Helmholtz free energy (F) of the parent compounds SrTe and BaTe.  相似文献   

12.
X-ray diffraction experiments have been combined with Raman scattering and transmission electron microscopy data to analyze the result of rapid thermal annealing (RTA) applied to Zr films, 16 or 80 nm thick, sputtered on Si1−xGex epilayers (0≤x≤1). The C49 Zr(Si1−xGex)2 is the unique phase obtained after complete reaction. ZrSi1−xGex is formed as an intermediate phase. The C49 formation temperature Tf is lowered by the addition of Ge in the structure. Above a critical Ge composition close to x=0.33, a film microstructure change was observed. Films annealed at temperatures close to Tf are continuous and relaxed. Annealing at T>Tf leads to discontinuous films: surface roughening resulting from SiGe diffusion at film grain boundaries occurred. Grains are ultimately partially embedded in a SiGe matrix. A reduction in the lattice parameters as well as a shift of Raman lines are observed as T exceeds Tf. Both Ge non-stoichiometry and residual stress have been considered as possible origins for these changes. However, as Ge segregation has never been detected, even by using very efficient techniques, it is thought that the changes originate merely from residual stress. The C49 grains are expected to be strained under the SiGe matrix effect and shift of the Raman lines would indicate the stress is compressive. Some simple evaluations of the stress values indicate that it varies between −0.3 and −3.5 GPa for 0≤x≤1 which corresponds to a strain in the range (−0.11, −1.15%). X-ray and Raman determinations are in good agreement.  相似文献   

13.
In a weak magnetic field LaMnO3+δ exhibits at δ=0.065 below the paramagnetic-to-ferromagnetic (FM) Curie temperature, TC, a mixed (spin-glass and FM) phase followed by a frustrated FM phase at δ between 0.100 and 0.154. The same behavior is observed in La1−xCaxMnO3 with x between 0 and 0.3. This can be understood by the similar variation of the Mn4+ concentration, c between ≈0.13 and 0.34, in both materials when x or δ is increased. On the other hand, considerable differences are found between these compounds in the values of the magnetic irreversibility, in the dependencies of TC(c) and the magnetic susceptibility, χ(c), as well as in the critical behavior of χ(T) near TC. These differences can be explained by distortions of the cubic perovskite structure, by the reduced lattice disorder and by the more homogeneous hole distribution in LaMnO3+δ than in La1−xCaxMnO3.  相似文献   

14.
The magnetic phase diagram for Mg1−xZnxCyNi3 has been tentatively constructed based on magnetization and muon spin relaxation (μSR) measurements. The superconducting phase was observed to fade as x (y) increases (decreases). The low y samples show early stages of long-range ferromagnetism, or complete long-range ferromagnetism. In the phase diagram, the ferromagnetic phase exists in addition to the superconducting phase, suggesting that there is some correlation between superconductivity and ferromagnetism, even though the coexistence of ferromagnetism and superconductivity is not observed from the μSR measurements down to 20 mK for the superconducting sample (Tc=2.5 K, (x, y)=(0, 0.9)).  相似文献   

15.
Ca4Mn3−xCrxO10 compounds were synthesized in order to investigate the role of an isoelectronic substitution in the layered manganite. Induced structural changes are mainly described as a distortion of the two types of octahedra in the n=3 RP structure. The results indicate that Cr3+ is not the only significant valence state for chromium ions. Electrical and magnetic characterization allow to conclude that chromium does not favour the double exchange mechanism in these compounds.  相似文献   

16.
Curie temperature, crystal structure and crystallization behavior of amorphous alloys with the stoichiometry Fe81−xNixZr7B12 (x=10–60) have been studied by X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and AC-magnetization (TMAG) measurements as functions of temperature. The thermal stability of long-range magnetic order, TC vs. Ni content in as-quenched amorphous alloys exhibits maximum at 352 °C for x=40. The primary crystallization has been detected during annealing at the first crystallization stage of all ribbons investigated.  相似文献   

17.
The Raman spectra of Sm1?xYxS for x?0.4 have been measured. Electronic scattering between the J = 0 ground state and the J = 1 and 2 excited states of Sm2+ is observed. The singlet-triplet transition is observed on both sides of the black to gold phase transition in Sm1?xYxS.  相似文献   

18.
Measurements of the a.c.susceptibility (χ=χ′+iχ″) have been made on the Mg substituted high TC superconducting system, CuBa2(MgxCa1−x)3Cu4O12−y (Cu-1234) with x=0, 0.10 & 0.20, at different values of the a.c.field amplitude. Estimates of the intergranular critical current density(JC) made from the field dependent χ″-T curves show an improvement in the Mg-substituted Cu-1234 system. Results have been analysed in the light of the crystal structure and the superconducting anisotropy factor (γab/ξc) of the Cu-1234 system. Lower superconducting anisotropy emanating from Mg substitution has been found to be significant, resulting in better superconducting properties.  相似文献   

19.
The crystal structure and electromagnetic properties as well as thermal stability of the A-site ordered PrBaMn2O6 manganites have been investigated. These samples have been prepared by using ‘two-steps’ synthesis mode. They have tetragonal structure with no tilt of MnO6 octahedra and show ferromagnetic metal to paramagnetic semiconductor transition. The most significant structural feature of the A-site ordered manganites is that the MnO2 sublattice is sandwiched by two types of rock-salt layers PrO and BaO. The different degree of Pr and Ba ions in the A-sublattice is revealed. The A-site ordered PrBaMn2O6 sample with maximum degree of the A-site order demonstrates ferromagnetic metallic to paramagnetic insulating transition with the Curie point ∼320 K. The A-site disordered Pr0.50Ba0.50MnO3 sample is ferromagnetic metal below TC≈140 K. The cation order in these compounds is stable in air up to 1300 °C. For the partly A-site ordered samples the magnetic and electronic phase separation is observed. The magnetotransport properties of the A-site ordered manganites treated under different conditions are discussed in terms of the superexchange interactions and A-site order degree.  相似文献   

20.
The famous Goldschmidt's tolerance factor gives us a necessary but not sufficient condition for the formation of perovskite-type compounds (ABX3). In this work, computerized data analysis has been used to find some complementary criteria for the formation and lattice distortion of perovskite-type complex halides. It has been found that the radius ratio (RA/RX) and (RB/RX), affecting the stability of BX6 octahedra and AX12 cubo-octahedra (they are basic units of perovskite structure), are also dominating factors for the formation and lattice distortion of perovskite-type compounds. Besides, it has been found that the transition between the perovskite structure (with corner-sharing BX6 octahedra) to BaNiO3 structure (with face-sharing BX6 octahedra) can be predicted by a criterion based on the relative magnitude of ionic radii and electronegativity. Based on multivariate data analysis, several complementary criteria for the formation and lattice distortion of perovskite-type complex halides have been obtained, and some empirical equations expressing the relationships between the ionic radii (RA,RB,RX) and the lattice constants of perovskite-type complex halides have been found. The physical meaning of these empirical relationships has been discussed based on Pauling's rules of the crystal lattice stability of complex ionic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号