首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the expression and characterization of a truncated form of MycA from the Mycosubtilin gene cluster from Bacillus subtilis. The MycA fragment contains a new amino transferase (AMT) tailoring domain, allowing the first detailed study of a PLP-dependent enzyme operating in cis within the PKS and NRPS biosynthetic paradigm. As the AMT domain acts on covalently bound beta-ketothioesters, and is therefore a single-turnover system, electrospray ionization-Fourier transform mass spectrometry (ESI-FTMS) was used to observe the amine-transfer reaction both for amine donor substrate specificity and to regiospecifically determine enzyme-bound intermediates. We confirm the function of the AMT domain, dissect the mechanistic steps of amine transfer, identify the preferred amine source, and localize the beta-ketothioester substrate during amine transfer.  相似文献   

2.
Antifungal HSAF (heat‐stable antifungal factor, dihydromaltophilin) is a polycyclic tetramate macrolactam from the biocontrol agent Lysobacter enzymogenes. Its biosynthetic gene cluster contains only a single‐module polyketide synthase–nonribosomal peptide synthetase (PKS‐NRPS), although two separate hexaketide chains are required to assemble the skeleton. To address the unusual biosynthetic mechanism, we expressed the biosynthetic genes in two “clean” strains of Streptomyces and showed the production of HSAF analogues and a polyene tetramate intermediate. We then expressed the PKS module in Escherichia coli and purified the enzyme. Upon incubation of the enzyme with acyl‐coenzyme A and reduced nicotinamide adenine dinucleotide phosphate (NADPH), a polyene was detected in the tryptic acyl carrier protein (ACP). Finally, we incubated the polyene–PKS with the NRPS module in the presence of ornithine and adenosine triphosphate (ATP), and we detected the same polyene tetramate as that in Streptomyces transformed with the PKS‐NRPS alone. Together, our results provide evidence for an unusual iterative biosynthetic mechanism for bacterial polyketide–peptide natural products.  相似文献   

3.
The jaspamide/chondramide family of depsipeptides are mixed PKS/NRPS natural products isolated from marine sponges and a terrestrial myxobacterium that potently affect the function of the actin cytoskeleton. As a first step to improve production in heterologous host cells and permit genetic approaches to novel analogs, we have cloned and characterized the chondramide biosynthetic genes from the myxobacterium Chondromyces crocatus Cm c5. In addition to the expected PKS and NRPS genes, the cluster encodes a rare tyrosine aminomutase for beta-tyrosine formation and a previously unknown tryptophan-2-halogenase. Conditions for gene transfer into C. crocatus Cm c5 were developed, and inactivation of several genes corroborated their proposed function and served to define the boundaries of the cluster. Biochemical characterization of the final NRPS adenylation domain confirmed the direct activation of beta-tyrosine, and fluorinated chondramides were produced through precursor-directed biosynthesis.  相似文献   

4.
In vitro analysis of natural product biosynthetic gene?products isolated from unculturable symbiotic bacteria is necessary to probe the functionalities of these enzymes. Herein, we report the biochemical characterization of BryR, the 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase (HMGS) homolog implicated in β-branching at C13 and C21 of the core ring system from the bryostatin metabolic pathway (Bry). We confirmed the activity of BryR using two complementary methods, radio-SDS PAGE, and Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS). The activity of BryR depended on pairing of the native acetoacetyl-BryM3 acceptor acyl carrier protein (ACP) with an appropriate donor acetyl-ACP from a heterologous HMGS cassette. Additionally, the ability of BryR to discriminate between various ACPs was assessed using a surface plasmon resonance (SPR)-based protein-protein binding assay. Our data suggest that specificity for a protein-bound acyl group is a distinguishing feature between HMGS homologs found in PKS or PKS/NRPS biosynthetic pathways and those of primary metabolism. These findings reveal an important example of molecular recognition between protein components that are essential for biosynthetic fidelity in natural product assembly and modification.  相似文献   

5.
BACKGROUND: Nonribosomal peptide synthetases (NRPSs) are large multidomain proteins that catalyze the formation of a wide range of biologically active natural products. These megasynthetases contain condensation (C) domains that catalyze peptide bond formation and chain elongation. The natural substrates for C domains are biosynthetic intermediates that are covalently tethered to thiolation (T) domains within the synthetase by thioester linkages. Characterizing C domain substrate specificity is important for the engineered biosynthesis of new compounds. RESULTS: We synthesized a series of aminoacyl-N-acetylcysteamine thioesters (aminoacyl-SNACs) and show that they are small-molecule substrates for NRPS C domains. Comparison of rates of peptide bond formation catalyzed by the C domain from enterobactin synthetase with various aminoacyl-SNACs as downstream (acceptor) substrates revealed high selectivity for the natural substrate analog L-Ser-SNAC. Comparing L- and D-Phe-SNACs as upstream (donor) substrates for the first C domain from tyrocidine synthetase revealed clear D- versus L-selectivity. CONCLUSIONS: Aminoacyl-SNACs are substrates for NRPS C domains and are useful for characterizing the substrate specificity of C domain-catalyzed peptide bond formation.  相似文献   

6.
BACKGROUND: Myxobacteria have been well established as a potent source for natural products with biological activity. They produce a considerable variety of compounds which represent typical polyketide structures with incorporated amino acids (e.g. the epothilons, the myxothiazols and the myxalamids). Several of these secondary metabolites are effective inhibitors of the electron transport via the respiratory chain and have been widely used. Molecular cloning and characterization of the genes governing the biosynthesis of these structures is of considerable interest, because such information adds to the limited knowledge as to how polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) interact and how they might be manipulated in order to form novel antibiotics. RESULTS: A DNA region of approximately 50000 base pairs from Stigmatella aurantiaca Sga15 was sequenced and shown by gene disruption to be involved in myxalamid biosynthesis. Sequence analysis reveals that the myxalamids are formed by a combined PKS/NRPS system. The terminal NRPS MxaA extends the assembled polyketide chain of the myxalamids with alanine. MxaA contains an N-terminal domain with homology to NAD binding proteins, which is responsible during the biogenesis for a novel type of reductive chain release giving rise to the 2-amino-propanol moiety of the myxalamids. The last module of the PKS reveals an unprecedented genetic organization; it is encoded on two genes (mxaB1 and mxaB2), subdividing the domains of one module from each other. A sequence comparison of myxobacterial acyl-transferase domains with known systems from streptomycetes and bacilli reveals that consensus sequences proposed to be specific for methylmalonyl-CoA and malonyl-CoA are not always reliable. CONCLUSIONS: The complete biosynthetic gene cluster of the myxalamid-type electron transport inhibitor from S. aurantiaca Sga15 has been cloned and analyzed. It represents one of the few examples of combined PKS/NRPS systems, the analysis and manipulation of which has the potential to generate novel hybrid structures via combinatorial biosynthesis (e.g. via module-swapping techniques). Additionally, a new type of reductive release from PKS/NRPS systems is described.  相似文献   

7.
HSAF was isolated from Lysobacter enzymogenes , a bacterium used in the biological control of fungal diseases of plants. Structurally, it is a tetramic acid-containing macrolactam fused to a tricyclic system. HSAF exhibits a novel mode of action by disrupting sphingolipids important to the polarized growth of filamentous fungi. Here we describe the HSAF biosynthetic gene cluster, which contains only a single-module polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS), although the biosynthesis of HSAF apparently requires two separate polyketide chains that are linked together by one amino acid (ornithine) via two amide bonds. Flanking the PKS/NRPS are six genes that encoding a cascade of four tightly clustered redox enzymes on one side and a sterol desaturase/fatty acid hydroxylase and a ferredoxin reductase on the other side. The genetic data demonstrate that the four redox genes, in addition to the PKS/NRPS gene and the sterol desaturase/fatty acid hydroxylase gene, are required for HSAF production. The biochemical data show that the adenylation domain of the NRPS specifically activates L-ornithine and that the four-domain NRPS is able to catalyze the formation of a tetramic acid-containing product from acyl-S-ACP and ornithinyl-S-NRPS. These results reveal a previously unrecognized biosynthetic mechanism for hybrid PK/NRP in prokaryotic organisms.  相似文献   

8.
Here, we report a new experimental approach utilizing an amide ligation reaction for the characterization of acyl carrier protein (ACP)-bound reaction intermediates, which are otherwise difficult to analyze by traditional biochemical methods. To explore fatty acid tailoring enzymes of the calcium-dependent antibiotic (CDA) biosynthetic pathway, this strategy enabled the transformation of modified fatty acids, covalently bound as thioesters to an ACP, into amide ligation products that can be directly analyzed and compared to synthetic standards by HPLC-MS. The driving force of the amide formation is the thermodynamic activation inherent to thioester-bound compounds. Using this novel method, we were able to characterize the ACP-mediated biosynthesis of the unique 2,3-epoxyhexanoyl moiety of CDA, revealing a new type of FAD-dependent oxidase HxcO with intrinsic enoyl-ACP epoxidase activity, as well as a second enoyl-ACP epoxidase, HcmO. In general, our approach should be widely applicable for the in vitro characterization of other biosynthetic systems acting on carrier proteins, such as integrated enzymes from NRPS and PKS assembly lines or tailoring enzymes of fatty and amino acid precursor synthesis.  相似文献   

9.
Carrier proteins are 80- to 100-residue way stations that are central to polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) enzymatic assembly lines. Because the biosynthetic intermediates for catalytic operations are presented on carrier proteins as covalently attached thioesters (via a 4'-phosphopantetheine prosthetic group), the specific protein-protein interactions between carrier proteins and other NRPS/PKS domains are critical for high-fidelity conversion to the final product. Here we show by combinatorial mutagenesis and selection that the aryl carrier protein of EntB (EntB-ArCP) contains localized protein interaction surfaces. Our strategy involved random mutagenesis of N-terminal regions of EntB-ArCP, then selection for clones that produce enterobactin by plating onto iron-deficient media. We identified several residues that were highly conserved from our selection, two of which (G242 and D244) constitute an interaction surface on EntB-ArCP for the phosphopantetheinyl transferases (PPTases) EntD and Sfp. This PPTase interface is distinct from a previously characterized interface on EntB-ArCP for the downstream elongation module, EntF. These results suggest that different protein components recognize different faces of EntB-ArCP in the enterobactin synthetase and that the majority of EntB-ArCP surface residues are not involved in these interactions. Therefore, designing noncognate carrier protein interactions in PKS and NRPS systems should be possible with very few mutations on a particular carrier protein.  相似文献   

10.
Evidence for a monomeric structure of nonribosomal Peptide synthetases   总被引:3,自引:0,他引:3  
Nonribosomal peptide synthetases (NRPS) are multimodular biocatalysts that bacteria and fungi use to assemble many complex peptides with broad biological activities. The same modular enzymatic assembly line principles are found in fatty acid synthases (FAS), polyketide synthases (PKS), and most recently in hybrid NRPS/PKS multienzymes. FAS as well as PKS are known to function as homodimeric enzyme complexes, raising the question of whether NRPS may also act as homodimers. To test this hypothesis, biophysical methods (size exclusion chromatography, analytical equilibrium ultracentrifugation, and chemical crosslinking) and biochemical methods (two-affinity-tag-system and complementation studies with enzymes being inactivated in different catalytic domains) were applied to NRPS subunits from the gramicidin S (GrsA-ATE), tyrocidine (TycB(1)-CAT and TycB(2-3)-AT.CATE), and enterobactin (EntF-CATTe) biosynthetic systems. These methods had revealed the dimeric structure of FAS and PKS previously, but all three NRPS systems investigated are functionally active as monomers.  相似文献   

11.
FR901464, an antitumor natural product, represents a new class of potent anticancer small molecules targeting spliceosome and inhibiting both splicing and nuclear retention of pre-mRNA. Herein we describe the biosynthetic gene cluster of FR901464, identified by degenerate primer PCR amplification of a gene encoding the 3-hydroxy-3-methylglutaryl-CoA synthase (HCS) postulated to be involved in the biosynthesis of a β-branched polyketide from Pseudomonas sp. No. 2663. This cluster consists of twenty open reading frames (ORFs) and was localized to 93-kb DNA segment, and its involvement in FR901464 biosynthesis was confirmed by gene inactivation and complementation. FR901464 is biosynthesized by a hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS), HCS, and acyltransferases (AT)-less system. The PKS/NRPS modules feature unusual domain organization including multiple domain redundancy, inactivation, and tandem. Biochemical characterization of a glyceryl transferase and an acyl carrier protein (ACP) in the start module revealed that it incorporates D-1,3-bisphosphoglycerate, which is dephosphorylated and transferred to ACP as the starter unit. Furthermore, an oxidative Baeyer-Villiger reaction followed by chain release was postulated to form a pyran moiety. On the basis of in silico analysis and genetic and biochemical evidances, a biosynthetic pathway for FR901464 was proposed, which sets the stage to further investigate the complex PKS biochemically and engineer the biosynthetic machinery for the production of novel analogues.  相似文献   

12.
A 135,638 bp DNA region that encompasses the leinamycin (LNM) biosynthetic gene cluster was sequenced from Streptomyces atroolivaceus S-140. The boundaries of the lnm cluster were defined by systematic inactivation of open reading frames within the sequenced region. The lnm cluster spans 61.3 kb of DNA and consists of 27 genes encoding nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), hybrid NRPS-PKS, resistance, regulatory, and tailoring enzymes, as well as proteins of unknown function. A model for LNM biosynthesis is proposed, central to which is the LNM hybrid NRPS-PKS megasynthetase consisting of discrete (LnmQ and LnmP) and modular (LnmI) NRPS, acyltransferase-less PKS (LnmG, LnmI, and LnmJ), and PKS modules with unusual domain organization. These studies unveil an unprecedented architectural complexity for the LNM hybrid NRPS-PKS megasynthetase and set the stage to investigate the molecular basis for LNM biosynthesis.  相似文献   

13.
BACKGROUND: The structural and catalytic similarities between modular nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) inspired us to search for a hybrid NRPS-PKS system. The antitumor drug bleomycin (BLM) is a natural hybrid peptide-polyketide metabolite, the biosynthesis of which provides an excellent opportunity to investigate intermodular communication between NRPS and PKS modules. Here, we report the cloning, sequencing, and characterization of the BLM biosynthetic gene cluster from Streptomyces verticillus ATCC15003. RESULTS: A set of 30 genes clustered with the previously characterized blmAB resistance genes were defined by sequencing a 85-kb contiguous region of DNA from S. verticillus ATCC15003. The sequenced gene cluster consists of 10 NRPS genes encoding nine NRPS modules, a PKS gene encoding one PKS module, five sugar biosynthesis genes, as well as genes encoding other biosynthesis, resistance, and regulatory proteins. The substrate specificities of individual NRPS and PKS modules were predicted based on sequence analysis, and the amino acid specificities of two NRPS modules were confirmed biochemically in vitro. The involvement of the cloned genes in BLM biosynthesis was demonstrated by bioconversion of the BLM aglycones into BLMs in Streptomyces lividans expressing a part of the gene cluster. CONCLUSION: The blm gene cluster is characterized by a hybrid NRPS-PKS system, supporting the wisdom of combining individual NRPS and PKS modules for combinatorial biosynthesis. The availability of the blm gene cluster has set the stage for engineering novel BLM analogs by genetic manipulation of genes governing BLM biosynthesis and for investigating the molecular basis for intermodular communication between NRPS and PKS in the biosynthesis of hybrid peptide-polyketide metabolites.  相似文献   

14.
Hybrid type I PKS/NRPS biosynthetic pathways typically proceed in a collinear manner wherein one molecular building block is enzymatically incorporated in a sequence that corresponds to gene arrangement. In this work, genome mining combined with the use of a fluorogenic azide‐based click probe led to the discovery and characterization of vatiamides A–F, three structurally diverse alkynylated lipopeptides, and their brominated analogues, from the cyanobacterium Moorea producens ASI16Jul14‐2. These derive from a unique combinatorial non‐collinear PKS/NRPS system encoded by a 90 kb gene cluster in which an upstream PKS cassette interacts with three separate cognate NRPS partners. This is facilitated by a series of promiscuous intermodule PKS‐NRPS docking motifs possessing identical amino acid sequences. This interaction confers a new type of combinatorial capacity for creating molecular diversity in microbial systems.  相似文献   

15.
A total of 223 complete bacterial genomes are analyzed, with 281 citations, for the presence of genes encoding modular polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We report on the distribution of these systems in different bacterial taxa and, whenever known, the metabolites they synthesize. We also highlight, in the different bacterial lineages, the PKS and NRPS genes and, whenever known, the corresponding products.  相似文献   

16.
Pathogenic bacteria of the Burkholderia pseudomallei group cause severe infectious diseases such as glanders and melioidosis. Malleicyprols were identified as important bacterial virulence factors, yet the biosynthetic origin of their cyclopropanol warhead has remained enigmatic. By a combination of mutational analysis and metabolomics we found that sulfonium acids, dimethylsulfoniumpropionate (DMSP) and gonyol, known as osmolytes and as crucial components in the global organosulfur cycle, are key intermediates en route to the cyclopropanol unit. Functional genetics and in vitro analyses uncover a specialized pathway to DMSP involving a rare prokaryotic SET‐domain methyltransferase for a cryptic methylation, and show that DMSP is loaded onto the NRPS‐PKS hybrid assembly line by an adenylation domain dedicated to zwitterionic starter units. Then, the megasynthase transforms DMSP into gonyol, as demonstrated by heterologous pathway reconstitution in E. coli.  相似文献   

17.
18.
Kirromycin is a complex linear polyketide that acts as a protein biosynthesis inhibitor by binding to the bacterial elongation factor Tu. The kirromycin biosynthetic gene cluster was isolated from the producer, Streptomyces collinus Tü 365, and confirmed by targeted disruption of essential biosynthesis genes. Kirromycin is synthesized by a large hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) encoded by the genes kirAI-kirAVI. This complex involves some very unusual features, including the absence of internal acyltransferase (AT) domains in KirAI-KirAV, multiple split-ups of PKS modules on separate genes, and swapping in the domain organization. Interestingly, one PKS enzyme, KirAVI, contains internal AT domains. Based on in silico analysis, a route to pyridone formation involving PKS and NRPS steps was postulated. This hypothesis was experimentally proven by feeding studies with [U-13C3(15)N]beta-alanine and NMR and MS analyses of the isolated pure kirromycin.  相似文献   

19.
The spore‐forming bacterium Paenibacillus larvae is the causative agent of American Foulbrood (AFB), a fatal disease of honey bees that occurs worldwide. Previously, we identified a complex hybrid nonribosomal peptide/polyketide synthesis (NRPS/PKS) gene cluster in the genome of P. larvae. Herein, we present the isolation and structure elucidation of the antibacterial and antifungal products of this gene cluster, termed paenilamicins. The unique structures of the paenilamicins give deep insight into the underlying complex hybrid NRPS/PKS biosynthetic machinery. Bee larval co‐infection assays reveal that the paenilamicins are employed by P. larvae in fighting ecological niche competitors and are not directly involved in killing the bee larvae. Their antibacterial and antifungal activities qualify the paenilamicins as attractive candidates for drug development.  相似文献   

20.
We have developed a phage-display method for high-throughput mining of bacterial gene clusters encoding the natural-product biosynthetic enzymes, polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). This method uses the phosphopantetheinyl transferase activity of Sfp to specifically biotinylate NRPS and PKS carrier-protein domains expressed from a library of random genome fragments fused to a gene encoding a phage coat protein. Subsequently, the biotinylated phages are enriched through selection on streptavidin-coated plates. Using this method, we isolated phage clones from the multiple NRPS and PKS gene clusters encoded in the genomes of Bacillus subtilis and Myxococcus xanthus. Due to the rapid and unambiguous identification of carrier domains, this method will provide an efficient tool for high-throughput cloning of NRPS and PKS gene clusters from many individual bacterial genomes and multigenome environmental DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号