首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The transient response of the input power necessary to maintain isothermal conditions after a step temperature perturbation applied to a platinum wire immersed in a gaseous fuel/air mixture allows for the measurement of the reaction heat flow rate, directly related to the rate of the catalytic combustion. The S-shaped variation of this rate in time is employed to evaluate the induction period of the catalytic ignition. The effect of mixture composition, total pressure, and catalyst temperature on the induction period for the catalytic ignition of lean to stoichiometric n-pentane/air mixtures on isothermally heated platinum wire is reported and discussed. The mixture composition was varied between 1.40 and 2.56% n-pentane in air, the total pressure between 20 and 101 kPa, and the wire temperature between 470 and 600 K. The reaction rates, turnover frequencies, overall and partial reaction orders, and activation energies were determined from the analysis of the obtained results and compared to other reported data.  相似文献   

2.
The present work aims to investigate several kinetic aspects of catalytic combustion of the stoichiometric propane–air mixture on a platinum wire in the presence of progressive CO2 dilution, using a micro-calorimetric method. The method allowed the determination of the induction periods and of the reaction rates during transient and steady-state regimes at different initial pressures P 0 (10–101 kPa), wire temperatures T w (470–575 K) and gas-phase composition. The kinetic parameters were evaluated from regression analysis using empirical and mechanistic models. The dilution with CO2 of the stoichiometric propane–air mixture (4.02% propane) was 10, 20, 30, 40, 50%. For additions equal to or greater than 23%, the gaseous system is outside the flammability limits reported in the literature. The kinetic characteristics of the catalytic combustion remain similar for the whole range, even for 50% CO2 addition when the propane concentration in mixture diminishes to 2%, a concentration smaller than the lower explosion limit in air in normal conditions.  相似文献   

3.
《Mendeleev Communications》2022,32(4):564-566
The features of catalytic ignition of 2H2 + O2 and (70% H2 + 30% C2H6) + air mixtures over Pd wire are established. It is shown that the catalytic wire or foil is heated unevenly before ignition: initial ignition centers always appear. With sequential ignitions, a clearly observed ignition center changes its location on the wire with every succeeding ignition.  相似文献   

4.
《Mendeleev Communications》2022,32(5):693-696
Using the combustion of n-pentane – air mixtures as an example, it was shown that thermoacoustic regimes of ignition disappear in the presence of a platinum surface, which generates catalytic centers propagating into the volume. Thus, the platinum catalyst eliminates a certain stage of kinetic mechanism, and the negative temperature coefficient phenomenon vanishes. In the presence of a palladium catalytic surface that does not generate catalytic centers propagating into the volume, the phenomenon of a negative temperature coefficient occurs.  相似文献   

5.
Thermal behavior of KClO4/Mg pyrotechnic mixtures heated in air was investigated by thermal analysis. Effects of oxygen balance and heating rates on the TG?CDSC curves of mixtures were examined. Results showed that DSC curves of the mixtures had two exothermic processes when heated from room temperature to 700?°C, and TG curve exhibited a slight mass gain followed by a two-stage mass fall and then a significant mass increase. The exothermic peak at lower temperature and higher temperature corresponded to the ignition process and afterburning process, respectively. Under the heating rate of 10?°C?min?1, the peak temperatures for ignition and afterburning process of stoichiometric KClO4/Mg (58.8/41.2) was 543 and 615?°C, respectively. When Mg content increased to 50%, the peak ignition temperature decreased to 530?°C, but the second exothermic peak changed little. Reaction kinetics of the two exothermic processes for the stoichiometric mixture was calculated using Kissinger method. Apparent activation energies for ignition and afterburning process were 153.6 and 289.5?kJ?mol?1, respectively. A five-step reaction pathway was proposed for the ignition process in air, and activation energies for each step were also calculated. These results should provide reference for formula design and safety storage of KClO4/Mg-containing pyrotechnics.  相似文献   

6.

A mathematical model and the results of calculating the ignition and combustion of energetic condensed systems based on mono- and polydispersed aluminum diboride particles in air flows in constant-cross-section channels are reported. The kinetic characteristics of the transformations that separate aluminum diboride particles formed by gasification of energetic condensed systems undergo in a high-temperature oxidizing medium were determined using the dependences of the ignition induction period and combustion time on the air temperature and diameter and initial temperature of the particles. These dependences, in turn, were calculated using the model of parallel chemical reactions. The range of combustion conditions corresponding to the initial air temperatures from 300 to 2000 K and Mach numbers in the channel from 0.1 to 1.5 was considered. The influence of the aluminum diboride particle size and of the rate and initial temperature of the air flow on the combustion efficiency was demonstrated. The relationships between the combustion completeness factor of aluminum diboride particles at various initial parameters of the air flow and gasification products of energetic condensed systems at various fuel mixture equivalence ratios, corresponding to the diffusion and kinetic combustion, were determined. The conditions of the transition between the diffusion and kinetic control modes were found.

  相似文献   

7.
通过对正丁烷/氢气/空气混合物在Pt 催化表面的详细反应机理分析, 研究了氢气添加对正丁烷/空气混合物催化着火过程的影响. 研究发现, 在正丁烷/空气混合中添加氢气有助于正丁烷在更低的温度下实现催化着火, 而且不同的氢气添加量对混合物的着火温度和着火过程呈现不同的影响: 当氢气添加量较小时, 氢气的作用主要呈现为热影响; 而当氢气添加量较大时, 氢气的作用主要呈现为化学影响. 这些结果与实验结果是一致的. 本文进一步确定了发挥不同作用的氢气添加量的范围, 并分别对热作用和化学作用情况下的着火启动反应进行了动力学分析.  相似文献   

8.
Heterogeneous ignition temperature of H2/O2/N2 mixture on polycrystalline platinum was measured for a wide range of composition at 101,330 Pa. We propose a new surface kinetic model of H2 oxidation on platinum by modification of the traditional surface reaction model. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
We describe a new T‐Jump/time‐of‐flight (TOF) mass spectrometer for the time‐resolved analysis of rapid pyrolysis chemistry of solids and liquids, with a focus on energetic materials. The instrument employs a thin wire substrate which can be coated with the material of interest, and can be rapidly heated (105 K/s). The T‐Jump probe is inserted within the extraction region of a linear TOF mass spectrometer, which enables multiple spectra to be obtained during a single reaction event. By monitoring the electrical characteristics of the heated wire, the temperature could also be obtained and correlated to the mass spectra. As examples, we present time‐resolved spectra for the ignition of nitrocellulose and RDX. The fidelity of the instrument is demonstrated in the spectra presented which show the temporal formation and decay of several species in both systems. The simultaneous measurement of temperature enables us to extract the ignition temperature and the characteristic reaction time. The time‐resolved mass spectra obtained show that these solid energetic material reactions, under a rapid heating rate, can occur on a time scale of milliseconds or less. While the data sampling rate of 10 000 Hz was used in the present experiments, the instrument is capable of a maximum scanning rate of up to ~30 kHz. The capability of high‐speed time‐resolved measurements offers an additional analytical tool for the characterization of the decomposition, ignition, and combustion of energetic materials. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
An experimental and computational investigation into the autoignition of methanol under high‐pressure and low‐to‐intermediate temperature conditions is conducted. The ignition delay results have been obtained using a heated rapid compression machine, over a pressure range of 7–30 bar, a temperature range of 850–1100 K, and an equivalence ratio range of 0.25–2.0. Using kinetic schemes recently reported in the literature for the combustion of methanol, the experimental results are compared to computationally obtained values. The kinetic schemes studied are found to significantly underpredict ignition delays for the conditions investigated. A sensitivity analysis of the computed results to reaction rate constants is also conducted. It is shown that the reaction of methanol with HO2 radical is critical to the predicted values of ignition delays under the current experimental conditions. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 175–184, 2011  相似文献   

11.
大分子碳氢燃料的低温化学反应及两阶段点火特性会显著影响火焰的分区及燃烧情况。本文采用数值模拟的方法探究了正庚烷/空气预混混合气在RATS燃具上的湍流火焰传播,与试验结果具有一致性。模拟使用的是44种物质,112步的正庚烷简化动力学机理。使用Open FOAM的reacting Foam求解器建立了简化模拟流道及出口的三维模型,模拟了在大气环境下,初始反应温度450–700 K、入口速度6 m·s~(-1)与10 m·s~(-1)、焰前流动滞留时间100 ms及60 ms、当量比φ=0.6的正庚烷/空气混合气湍流火焰燃烧情况。结果发现,标准化湍流燃烧速度与混合气初始温度以及流动滞留时间有关。在低温点火阶段,正庚烷氧化程度受到初始温度与速度的影响,燃料分解并在预热区中产生大量中间物质如CH_2O,继而会影响湍流火焰燃烧速度。随着初始反应温度的升高,湍流燃烧火焰逐渐由化学反应冻结区过渡到低温点火区;温度超过一定数值后,燃料不再发生低温反应,此时燃烧位于高温点火区域。  相似文献   

12.
在激波管上进行了气相十氢萘/空气混合物的着火延迟测量, 着火温度为950-1395 K, 着火压力为1.82×105-16.56×105 Pa, 化学计量比分别为0.5、1.0 和2.0. 在侧窗处利用反射激波压力和CH*发射光来测出着火延迟时间. 系统研究了着火温度、着火压力和化学计量比对十氢萘着火延迟时间的影响. 实验结果显示着火温度和着火压力的升高均会缩短着火延迟时间. 首次在相对高和低压的条件下观察到了化学计量比对十氢萘着火延迟的影响是完全相反的. 当压力为15.15×105 Pa时, 富油混合物呈现出最短的着火延迟时间, 而贫油混合物的着火延迟时间却是最长的. 相反, 当压力为2.02×105 Pa时, 富油混合物的着火延迟时间最长. 着火延迟数据与已有的动力学机理的预测值进行对比, 结果显示机理在所有的实验条件下均很好地预测了实验着火延时趋势. 为了探明化学计量比对着火延迟时间影响的本质, 对高、低压条件下的着火延时进行了敏感度分析.结果显示, 压力为2.02×105 Pa时, 控制着火延迟的关键反应为H+O2=OH+O, 而涉及十氢萘及其相应自由基的反应在15.15×105 Pa时对着火延迟起主要作用.  相似文献   

13.
The stability of platinized catalytic electrodes prepared by thermal decomposition of hexachloroplatinic acid was investigated. The platinum on the electrode did not dissolve in the presence of the electrolyte containing an iodide/triiodide redox couple, even under anodic bias. The electrocatalytic activity of platinized catalytic electrodes sealed in a cell with oxygen‐free electrolyte did not decrease within 23 weeks. However, the charge transfer resistance value of platinized catalytic electrodes increased tenfold when the electrodes were heated at 150° for 15 min in air during the sealing process and doubled when the electrodes were reused. The XPS analysis results showed that part of the platinum catalyst on the surface of the electrode was transformed to Pt[II] and Pt[IV] during the thermal sealing process, which led to the decrease of catalytic activity of the platinized catalytic electrodes for the reduction of triiodide. A large amount of inactive iodine absorbed on the surface of the reused electrode, which was confirmed by XPS, also decreased the electrocatalytic activity of the electrodes. The electrocatalytic activity of reused electrodes can be recovered by heating again at 390 °C or removing the platinum oxide and inactive iodine by the electrochemical method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
A simple and efficient one-pot procedure for the synthesis of α-diketones from aldehydes via benzoin condensation under the influence of a catalytic amount of azolium salt combined with DBU has been developed. Thus, aldehyde was allowed to react with the azolium salt/DBU catalytic system at room temperature, and then the reaction mixture was heated to 70 °C under air atmosphere to afford the corresponding 1,2-diketone in good yield. This would be an efficient alternative method of synthesizing α-diketones from aldehydes under metal-free conditions.  相似文献   

15.

The transport properties and morphological characteristics of perfluorinated membranes after deposition of the layer of platinum dispersion on the surface are studied. The significant effect of preliminary modification of perfluorinated membraned with polyaniline on the diffusion permittivity of the composite and the morphology of the layer of platinum dispersion is determined. Testing the composites as proton conductors with a catalytic layer on the surface in an air–hydrogen fuel cell has shown the effect of the asymmetry of the electrochemical characteristics of the membrane–electrode assembly at various orientations of the layer of platinum dispersion towards hydrogen and air flows. A higher catalytic activity of the composite membranes in the oxygen reduction reaction is determined in the case platinum dispersion is deposited onto the membrane preliminarily modified with polyaniline.

  相似文献   

16.
IntroductionThe phenomenon of catalytic combustion was firstdiscovered in 1817 when Humphry Davy observed thatPt wires could promote combustion reactions in flamma-ble mixtures. Since then, considerable efforts havebeen focused on the application of catal…  相似文献   

17.
燃煤固硫及催化燃烧一体化添加剂的催化作用机理研究   总被引:10,自引:0,他引:10  
用热重法研究了燃煤固硫及催化燃烧一体化添加剂对峰峰烟煤的催化燃烧和催化固硫作用,采用非等温燃烧反应模型和粒子模型,计算了加入一体化添加剂前后煤的燃烧反应动力学和固硫反应动力学参数,对一体化添加剂的催化作用机理进行了分析。结果表明,一体化添加剂中金属催化组分Fe2O3对煤的燃烧和固硫组分CaO的固硫均起到了较好的催化促进作用。一体化添加剂的加入可提高煤的燃烧反应速率,外加金属离子通过电荷迁移使碳表面的棱、角、缺陷等活性部位增加,加快了氧气的吸附速度,使反应活化能和频率因子降低。在燃烧固硫反应,一体化添加剂中金属助剂Fe2O3催化了SO2转变为SO3的过程,使固硫组分CaO的硫酸盐化反应表面化学反应速度常数k和有效扩散系数D增大,在固硫反应的产物层扩散控制阶段,Fe2O3的存在使得CaO晶粒团之间相互接触黏连的几率减小,减轻了固硫产物CaSO4的团聚,弱化了扩散作用的影响,减轻了CaO固硫反应的孔窒息效应。  相似文献   

18.
The interaction of the low-pressure flame of a 2H2-O2 mixture with a quartz reactor surface was studied by the resonance fluorescence technique. The results confirmed the fundamental statement of N. N. Semenov’s theory concerning chain propagation in the gas and termination on the surface in the kinetic region of chain termination (quadratic decay in the heterogeneous negative chain interaction) and in the diffusion region (linear decay). The kinetic curves observed in the kinetic and diffusion chain termination regions on the wall were well matched using N. N. Semenov’s theory, taking into account the heterogeneous catalytic chain initiation and interaction processes occurring on the wall with a variable “rate constant.” The interaction of chains on the wall markedly retards ignition in the gas in the kinetic region and has almost no influence on chain propagation in the gas in the diffusion region of the heterogeneous chain termination. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1301–1308, August, 2006.  相似文献   

19.
The reduction of 6-amino-5-nitroso-1,3-dimethyluracil (ANDMU) is a key step in caffeine synthesis. Electroreduction technology is a promising green chemical process. The voltammetric behavior of ANDMU at polycrystalline platinum and nickel cathodes was studied. The Nicholson theory was used to resolve the reduction process semi-quantitatively. The results show that ANDMU mainly undergoes an ECE (electron transfer, chemical reaction, electron transfer) process involving four electrons on the platinum and nickel cathodes in which the two electron-transfer steps occur at almost the same potential and the rate of the coupling chemical reaction between two electron-transfer steps is very fast. Apparent kinetic data and diffusion coefficient were determined for the platinum rotating-disk electrode.  相似文献   

20.
Pyrolysis and combustion characteristics of bio-oil derived from swine manure were investigated using thermogravimetry techniques. Thermogravimetric analysis of the bio-oils were carried out in O2 and N2 atmosphere under different heating rates (5–20 °C/min) to a maximum temperature of 900 °C. The results indicate that the combustion processes of bio-oil occurred in three stages, namely the water and the lighter compound evaporation, i.e., the release of the volatile compounds, ignition and burning of the heavier compounds (mainly carbon), and finally decomposition of the carbonate compounds. The effect of heating rate was also studied, and higher heating rates were found to facilitate the combustion process. Different reaction kinetic mechanisms were used to treat TG data, and showed that diffusion models are the best fit for describing the combustion of bio-oil in air. The kinetic parameters of the three stages were determined using Coats–Redfern method. The study provided reliable basic data for the burning of bio-oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号