首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Jorge Amaya  Paula Uribe 《TOP》2018,26(3):383-402
This work introduces a model of the crew scheduling problem for the operation of trains in the mining industry in the North of Chile. The model possesses particular features due to specific regulations with which train operators in mine material transportation are required to comply: every week, a fixed set of trips must be made according to current demand for the transportation of mine products and supplies. In order to balance the loads of the crews in the long term, the proposed model generates an infinite horizon schedule by means of a rotative scheme in which each crew takes the place of the previous one at the beginning of the next week. This gives rise to a medium/large size 0–1 linear optimization problem, whose solution represents the optimal assignment of drivers to trips with the number of working hours per week distributed equally among crews. The model and algorithm have been implemented with a user interface suitable for the remote execution of real instances on a High Performance Computing platform. The transportation company regularly uses this computerized tool for planning crew schedules and generating efficient assignments for emerging and changing operational conditions.  相似文献   

2.
This paper presents a computationally effective heuristic method which produces good-quality solutions for large-scale set covering problems with thousands of constraints and about one million variables. The need to solve such large-scale problems arises from a crew scheduling problem of mass transit agencies where the number of work shifts required has to be minimized. This problem may be formulated as a large-scale non-unicost set covering problem whose rows are trips to be performed while columns stand for round trips. The proposed method is mainly based on lagragian relaxation and sub-gradient optimization. After the reduction of the number of rows and columns by the logical tests, “greedy” heuristic algorithms provide upper and lower bounds which are continuously improved to produce goodquality solutions. Computational results, regarding randomly generated problems and real life problems concerning crew scheduling at Italian Railways Company, show that good-quality solutions can be obtained at an acceptable computational cost. This work was supported by the project “Progetto Finalizzato Transporti 2” of National Research Council of Italy (C.N.R.) contract No. 94.01436PF74 and by “Ferrovie dello Stato S.p.A.”  相似文献   

3.
Crew management is concerned with building the work schedules of crews needed to cover a planned timetable. This is a well-known problem in Operations Research and has been historically associated with airlines and mass-transit companies. More recently, railway applications have also come on the scene, especially in Europe. In practice, the overall crew management problem is decomposed into two subproblems, called crew scheduling and crew rostering. In this paper, we give an outline of different ways of modeling the two subproblems and possible solution methods. Two main solution approaches are illustrated for real-world applications. In particular we discuss in some detail the solution techniques currently adopted at the Italian railway company, Ferrovie dello Stato SpA, for solving crew scheduling and rostering problems.  相似文献   

4.
Airline crew scheduling problem is a complex and difficult problem faced by all airline companies.To tackle this problem, it was often decomposed into two subproblems solved successively. First, the airline crew-pairing problem, which consists on finding a set of trips – called pairings – i.e. sequences of flights, starting and ending at a crew base, that cover all the flights planned for a given period of time. Secondly, the airline crew rostering problem, which consists on assigning the pairings found by solving the first subproblem, to the named airline crew members. For both problems, several rules and regulations must be respected and costs minimized.It is sure that this decomposition provides a convenient tool to handle the numerous and complex restrictions, but it lacks, however, of a global treatment of the problem. For this purpose, in this study we took the challenge of proposing a new way to solve both subproblems simultaneously. The proposed approach is based on a hybrid genetic algorithm. In fact, three heuristics are developed here to tackle the restriction rules within the GA’s process.  相似文献   

5.
A typical railway crew scheduling problem consists of two phases: a crew pairing problem to determine a set of crew duties and a crew rostering problem. The crew rostering problem aims to find a set of rosters that forms workforce assignment of crew duties and rest periods satisfying several working regulations. In this paper, we present a two-level decomposition approach to solve railway crew rostering problem with the objective of fair working condition. To reduce computational efforts, the original problem is decomposed into the upper-level master problem and the lower-level subproblem. The subproblem can be further decomposed into several subproblems for each roster. These problems are iteratively solved by incorporating cuts into the master problem. We show that the relaxed problem of the master problem can be formulated as a uniform parallel machine scheduling problem to minimize makespan, which is NP-hard. An efficient branch-and-bound algorithm is applied to solve the master problem. Effective valid cuts are developed to reduce feasible search space to tighten the duality gap. Using data provided by the railway company, we demonstrate the effectiveness of the proposed method compared with that of constraint programming techniques for large-scale problems through computational experiments.  相似文献   

6.
In this paper, we discuss the dynamic vehicle and crew scheduling problem and we propose a solution approach consisting of solving a sequence of optimization problems. Furthermore, we explain why it is useful to consider such a dynamic approach and compare it with a static one. Moreover, we perform a sensitivity analysis on our main assumption that the travel times of the trips are known exactly a certain amount of time before actual operation.We provide extensive computational results on some real-world data instances of a large public transport company in the Netherlands. Due to the complexity of the vehicle and crew scheduling problem, we solve only small and medium-sized instances with such a dynamic approach. We show that the results are good in the case of a single depot. However, in the multiple-depot case, the dynamic approach does not perform so well. We investigate why this is the case and conclude that the fact that the instance has to be split in several smaller ones, has a negative effect on the performance.  相似文献   

7.
8.
Operations management of subway systems is associated with combinatorial optimization problems (i.e. crew and train scheduling and rostering) which belong to the np-hard class of problems. Therefore, they are generally solved heuristically in real situations. This paper considers the problem of duty generation, i.e. identifying an optimal trips set that the conductors should complete in one workday. With regard to operational and labor conditions, the problem is to use the lowest possible number of conductors and minimize total idle time between trips. The problem is modeled and solved using a constructive hybrid approach, which has the advantage of visualizing a solution construction similar to the manual approach typically used. Our approach takes advantage of the benefits offered by evolutionary methods, which store a candidate solutions population in each stage, thus controlling the combinatorial explosion of possible solutions. The results thus obtained for problems similar to those that are solved manually in the Santiago Metro System were compared with two alternative approaches, based on tabu search and a greedy method. The hybrid method produced solutions with the minimum number of duties in six of the ten problems solved. However, the tabu search method provided better results in terms of idle time than either the hybrid method or the greedy method.  相似文献   

9.
This paper presents ACO_GLS, a hybrid ant colony optimization approach coupled with a guided local search, applied to a layout problem. ACO_GLS is applied to an industrial case, in a train maintenance facility of the French railway system (SNCF). Results show that an improvement of near 20% is achieved with respect to the actual layout. Since the problem is modeled as a quadratic assignment problem (QAP), we compared our approach with some of the best heuristics available for this problem. Experimental results show that ACO_GLS performs better for small instances, while its performance is still satisfactory for large instances.  相似文献   

10.
The integrated vehicle-crew-roster problem with days-off pattern aims to simultaneously determine minimum cost vehicle and daily crew schedules that cover all timetabled trips and a minimum cost roster covering all daily crew duties according to a pre-defined days-off pattern. This problem is formulated as a new integer linear programming model and is solved by a heuristic approach based on Benders decomposition that iterates between the solution of an integrated vehicle-crew scheduling problem and the solution of a rostering problem. Computational experience with data from two bus companies in Portugal and data from benchmark vehicle scheduling instances shows the ability of the approach for producing a variety of solutions within reasonable computing times as well as the advantages of integrating the three problems.  相似文献   

11.
This paper proposes a novel approach for energy-efficient timetabling by adjusting the running time allocation of given timetables using train trajectory optimization. The approach first converts the arrival and departure times to time window constraints in order to relax the given timetable. Then a train trajectory optimization method is developed to find optimal arrival/departure times and optimal energy-efficient speed profiles within the relaxed time windows. The proposed train trajectory optimization method includes two types, a single-train trajectory optimization (STTO), which focuses on optimizing individual train movements within the relaxed arrival and departure time windows, and a multi-train trajectory optimization (MTTO), which computes multi-train trajectories simultaneously with a shared objective of minimizing multi-train energy consumption and an additional target of eliminating conflicts between trains. The STTO and MTTO are re-formulated as a multiple-phase optimal control problem, which has the advantage of accurately incorporating varying gradients, curves and speed limits and different train routes. The multiple-phase optimal control problem is then solved by a pseudospectral method. The proposed approach is applied in case studies to fine-tune two timetables, for a single-track railway corridor and a double-track corridor of the Dutch railway. The results suggest that the proposed approach is able to improve the energy efficiency of a timetable.  相似文献   

12.
In the airline industry, crew schedules consist of a number of pairings. These are round trips originating and terminating at the same crew home base composed of legal work days, called duties, separated by rest periods. The purpose of the airline crew pairing problem is to generate a set of minimal cost crew pairings covering all flight legs. The set of pairings must satisfy all the rules in the work convention and all the appropriate air traffic regulations. The resulting constraints can affect duty construction, may restrict each pairing, or be imposed on the overall crew schedule.The pairing problem is formulated as an integer, nonlinear multi-commodity network flow problem with additional resource variables. Nonlinearities occur in the objective function as well as in a large subset of constraints. A branch-and-bound algorithm based on an extension of the Dantzig-Wolfe decomposition principle is used to solve this model. The master problem becomes a Set Partitioning type model, as in the classical formulation, while pairings are generated using resource constrained shortest path subproblems. This primal approach implicitly considers all feasible pairings and also provides the optimality gap value on a feasible solution. A nice feature of this decomposition process is that it isolates all nonlinear aspects of the proposed multi-commodity model in the subproblems which are solved by means of a specialized dynamic programming algorithm.We present the application and implementation of this approach at Air France. It is one of the first implementations of an optimal approach for a large airline carrier. We have chosen a subproblem network representation where the duties rather than the legs are on the arcs. This ensures feasibility relative to duty restrictions by definition. As opposed to Lavoie, Minoux and Odier (1988), the nonlinear cost function is modeled without approximations. The computational experiments were conducted using actual Air France medium haul data. Even if the branch-and-bound trees were not fully explored in all cases, the gaps certify that the computed solutions are within a fraction of one percentage point of the optimality. Our results illustrate that our approach produced substantial improvements over solutions derived by the expert system in use at Air France. Their magnitude led to the eventual implementation of the approach.  相似文献   

13.
Train crew management involves the development of a duty timetable for each of the drivers (crew) to cover a given train timetable in a rail transport organization. This duty timetable is spread over a certain period, known as the roster planning horizon. Train crew management may arise either from the planning stage, when the total number of crew and crew distributions are to be determined, or from the operating stage when the number of crew at each depot is known as input data. In this paper, we are interested in train crew management in the planning stage. In the literature, train crew management is decomposed into two stages: crew scheduling and crew rostering which are solved sequentially. We propose an integrated optimization model to solve both crew scheduling and crew rostering. The model enables us to generate either cyclic rosters or non-cyclic rosters. Numerical experiments are carried out over data sets arising from a practical application.  相似文献   

14.
Urban rapid transit network design: accelerated Benders decomposition   总被引:1,自引:0,他引:1  
This paper presents an urban rapid transit network design model, which consists of the location of train alignments and stations in an urban traffic context. The design attempts to maximize the public transportation demand using the new infrastructure, considering a limited budget and number of transit lines. The location problem also incorporates the fact that users can choose their transportation mode and trips. In real cases, this problem is complex to solve because it has thousands of binary variables and constraints, and cannot be solved efficiently by Branch and Bound. For this reason, some algorithms based on Benders decomposition have been defined in order to solve it. These algorithms have been compared in test networks. The project has been supported by the research project 70029/T05, from the Spanish “Ministerio de Fomento” and the research project TRA2005-09068-C03-01, from the Spanish “Ministerio de Educación y Ciencia”.  相似文献   

15.
揭示了铁路枢纽编组站分工问题可以分解为车流在枢纽内作业地点的选择和走行径路的选择两个层次,根据问题的实际背景和内在机理,构造了作业地点选择和走行径路选择两个层次的数学优化模型,并自然展示了二者间的联系,针对所建模型为NP完全问题的特点,提出了利用遗传算法求解模型的主要策略,并进行了仿真计算。  相似文献   

16.
17.
The airline industry is faced with some of the largest scheduling problems of any industry. The crew scheduling problem involves the optimal allocation of crews to flights. Over the last two decades the magnitude and complexity of crew scheduling problems have grown enormously and airlines are relying more on automated mathematical procedures as a practical necessity. In this paper we survey different approaches studied and discuss the state-of-the-art in solution methodology for the airline crew scheduling problem. We conclude with a discussion about promising areas for further work to make it possible to get very good solutions for the crew scheduling problem.  相似文献   

18.
The vehicle scheduling problem, arising in public transport bus companies, addresses the task of assigning buses to cover a given set of timetabled trips with consideration of practical requirements, such as multiple depots and vehicle types as well as depot capacities. An optimal schedule is characterized by minimal fleet size and minimal operational costs including costs for unloaded trips and waiting time. This paper discusses the multi-depot, multi-vehicle-type bus scheduling problem (MDVSP), involving multiple depots for vehicles and different vehicle types for timetabled trips. We use time–space-based instead of connection-based networks for MDVSP modeling. This leads to a crucial size reduction of the corresponding mathematical models compared to well-known connection-based network flow or set partitioning models. The proposed modeling approach enables us to solve real-world problem instances with thousands of scheduled trips by direct application of standard optimization software. To our knowledge, the largest problems that we solved to optimality could not be solved by any existing exact approach. The presented research results have been developed in co-operation with the provider of transportation planning software PTV AG. A software component to support planners in public transport was designed and implemented in context of this co-operation as well.  相似文献   

19.
从双向编组站运输生产实际情况出发,以最大化车站发出车数和最小化车辆在站平均停留时间(中时)为目标,综合考虑解体、编组调机能力限制、到发列车车流接续、车流在站停留时间约束的影响,建立了车站货运列车编组调度问题的多目标非线性混合整数规划模型,结合该优化模型难以求解的特点,将编组调度问题分解为配流、待解车列解体和待编车列编组三个子问题,进而设计了求解该问题的分层启发式算法,对正常和特殊运输组织条件下的列车编组调度问题进行了求解.  相似文献   

20.
Singapore Mass Rapid Transit (SMRT) operates two train lines with 83 kilometers of track and 48 stations. A total of 77 trains are in operation during peak hours and 41 during off-peak hours. In this article we report on an optimization based approach to develop a computerized train-operator scheduling system that has been implemented at SMRT. The approach involves a bipartite matching algorithm for the generation of night duties and a tabu search algorithm for the generation of day duties. The system automates the train-operator scheduling process at SMRT and produces favorable schedules in comparison with the manual process. It is also able to handle the multiple objectives inherent in the crew scheduling system. While trying to minimize the system wide crew-related costs, the system is also able to address concern with respect to the number of split duties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号