首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Resonant microcantilevers have demonstrated that they can play an important role in the detection of chemical and biological agents. Molecular interactions with target species on the mechanical microtransducers surface generally induce a change of the beam's bending stiffness, resulting in a shift of the resonance frequency. In most biochemical sensor applications, cantilevers must operate in liquid, even though damping deteriorates the vibrational performances of the transducers. Here we focus on diamond-based microcantilevers since their transducing properties surpass those of other materials. In fact, among a wide range of remarkable features, diamond possesses exceptional mechanical properties enabling the fabrication of cantilever beams with higher resonant frequencies and Q-factors than when made from other conventional materials. Therefore, they appear as one of the top-ranked materials for designing cantilevers operating in liquid media. In this study, we evaluate the resonator sensitivity performances of our diamond microcantilevers using grafted carboxylated alkyl chains as a tool to investigate the subtle changes of surface stiffness as induced by electrostatic interactions. Here, caproic acid was immobilized on the hydrogen-terminated surface of resonant polycrystalline diamond cantilevers using a novel one-step grafting technique that could be also adapted to several other functionalizations. By varying the pH of the solution one could tune the -COO(-)/-COOH ratio of carboxylic acid moieties immobilized on the surface, thus enabling fine variations of the surface stress. We were able to probe the cantilevers resonance frequency evolution and correlate it with the ratio of -COO(-)/-COOH terminations on the functionalized diamond surface and consequently the evolution of the electrostatic potential over the cantilever surface. The approach successfully enabled one to probe variations in cantilevers bending stiffness from several tens to hundreds of millinewtons/meter, thus opening the way for diamond microcantilevers to direct sensing applications in liquids. The evolution of the diamond surface chemistry was also investigated using X-ray photoelectron spectroscopy.  相似文献   

2.
A convenient and rapid procedure has been achieved to immobilize densely packed nanoporous 3D arrays of oleic acid (OLEA)-capped rod-shaped TiO2 nanocrystals (NCs) and nearly spherical Fe2O3 NCs on the surface of micro mechanical cantilever sensors on SU-8. The NCs have been immobilized at room temperature and in the dark on the micro cantilevers before their release. AFM, SEM and XPS investigations attest for an effective and attachment of the NCs on the SU-8 which occurs with not modifying the original morphology and chemical composition of the nano-objects allowing for an effective accomplishment of the cantilever fabrication.  相似文献   

3.
A. Airoudj  D. Debarnot  B. Bêche 《Talanta》2009,77(5):1590-1596
Polyaniline (PANI)/glycidyl ether of bisphenol A (SU-8) composite film is elaborated in order to detect ammonia gas. These composite films are characterized by ultraviolet-visible (UV-vis) spectroscopy, Fourier transformed infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The sensitivity to ammonia is measured by optical absorption changes. The ammonia sensing properties of PANI/SU-8 composite films are studied, and then are compared to pure PANI films elaborated by chemical way. Experimental results show that the PANI/SU-8 optical sensor has simultaneously a rapid response to ammonia gas and regenerates easily, that is advantageous compared to pure PANI films.  相似文献   

4.
Since its introduction in the nineties, the negative resist SU-8 has been increasingly used in micro- and nanotechnologies. SU-8 has made the fabrication of high-aspect ratio structures accessible to labs with no high-end facilities such as X-ray lithography systems or deep reactive ion etching systems. These low-cost techniques have been applied not only in the fabrication of metallic parts or molds, but also in numerous other micromachining processes. Its ease of use has made SU-8 to be used in many applications, even when high-aspect ratios are not required. Beyond these pattern transfer applications, SU-8 has been used directly as a structural material for microelectromechanical systems and microfluidics due to its properties such as its excellent chemical resistance or the low Young modulus. In contrast to conventional resists, which are used temporally, SU-8 has been used as a permanent building material to fabricate microcomponents such as cantilevers, membranes, and microchannels. SU-8-based techniques have led to new low-temperature processes suitable for the fabrication of a wide range of objects, from the single component to the complete lab-on-chip. First, this article aims to review the different techniques and provides guidelines to the use of SU-8 as a structural material. Second, practical examples from our respective labs are presented.  相似文献   

5.
Diamond like carbon (DLC) coatings are well established for multiple applications. The electrical conductivity of DLC or amorphous carbon can be influenced by several orders of magnitude via doping with different metals. Depending on the deposition process hydrogen may be incorporated as well, thereby decreasing the conductivity. Recent investigations of DLC disclose nice piezoresistive properties.Our work was focused on Ni:a-C:H thin films on different substrates by reactive sputtering from a nickel target. Several carbon precursors were added to the sputtering gas to create an amorphous carbon hydrogen network with embedded crystal clusters. In order to optimize the piezoresistive properties we varied various process parameters. The piezoresistive response was monitored by measuring the resistance change during bending. Our Ni:a-C:H films develop gauge factors of approx. 12 in a wide range of process parameters.For sensor applications the temperature coefficient of resistance (TCR) is important as well. It depends on the metal concentration in the thin film and can be adjusted by the concentration of the incorporated nickel. It can be set to approximately zero in a wide temperature range of 80–400 K. The combination of a high gauge factor and a very small TCR is achieved and described in this paper.XRD measurements reveal nickel or nickel carbide clusters with diameters of approx. 8–30 nm depending on the metal concentration. The clusters crystallize in the hexagonal hcp structure which could be transformed into the cubic fcc structure of nickel by thermal annealing in a vacuum.  相似文献   

6.
A model K+ sensor using Prussian blue nanotubes is fabricated by electrochemical deposition of Prussian blue (PB) within the nanochannels of a porous metal-coated membrane with partially covered pore openings. The PB nanotube sensor exhibits excellent stability giving reproducible peak potentials up to 500 measurement cycles, a very low detection limit of 2.0 × 10−8 M and extremely wide logarithmic linear ranges between 5.0 × 10−8–7.0 × 10−4 M and 7.0 × 10−4–1.0 M. Negligible interferences by Na+, Mg2+ and Ca2+ are observed and a rapid analysis time of 30 s is readily achieved. The ease of electrodeposition, high stability of PB nanotubes and outstanding analytical performance which surpasses conventional PB voltammetric and potentiometric sensors demonstrates potential sensing applications including ion sensors and biosensors using PB and other metal hexacyanoferrate nanotubes.  相似文献   

7.
Microfabricated silicon cantilever sensor arrays represent a powerful platform for sensing applications in physics, chemistry, material science, biology and medicine. The sensor response is mechanical bending due to absorption of molecules. In gaseous environment, polymer-coated microcantilevers are used as electronic nose for characterization of vapors, resulting in cantilever bending due to polymer swelling upon exposure. Medical applications involve fast characterization of exhaled patient's breath samples for detection of diseases, based on the presence of certain chemicals in breath. We present a portable, compact, modular microcantilever setup, which uses a micropump for aspiration and a bluetooth interface for remote data acquisition.  相似文献   

8.
研制了一套基于光杠杆原理的微悬臂梁阵列传感器平台,并通过使用设计制作的微悬臂梁阵列芯片展示其在生物化学方面的检测应用.传感器平台使用光导纤维束分别与激光器耦合作为悬臂梁阵列的扫描光源,具有良好的检测稳定性,检测信号噪声水平约为2 nm;设计制作的微悬臂梁阵列芯片具有良好的平直度,温度响应均匀一致,各梁温度改变响应灵敏度偏差不超过5.0%.将整套传感系统被用于检测水溶液中的Hg2+,检测浓度范围为1 ~ 200 ng/mL;同一浓度下微悬臂梁阵列检测结果曲线一致性良好,平均偏差小于15%.在研制仪器平台上,分别实现了自制和国外商品化芯片对1.0和0.2 ng/mL样品的检测,结果表明,制作的微悬臂梁阵列芯片的检测灵敏度相对较低,需进一步改进悬臂梁阵列制作工艺.  相似文献   

9.
Candle soot (CS) is a desirable carbon nanomaterial for sensors owing to its highly porous nanostructure and large specific surface area. CS is advantageous in its low-cost and facile preparation compared to graphene and carbon nanotubes, but its pristine nanostructure is susceptible to collapse, hampering its application in electronic devices. This article reports conformal coating of nanoscale crosslinked hydrophilic polymer on CS film using initiated chemical vapor deposition, which well preserved the CS nanostructure and obtained nanoporous CS@polymer composites. Tuning coating thickness enabled composites with different morphologies and specific surface areas. Surprisingly, the humidity sensor made from composite with the lowest filling degree, thus largest specific surface area, showed relatively low sensitivity, which is likely due to its discontinuous structure, thus insufficient conductive channels. Composite sensor with optimum filling degree shows excellent sensing response of more than 103 with the linearity of R2 = 0.9400 within a broad relative humidity range from 11% to 96%. The composite sensor also exhibits outstanding sensing performance compared to literature with low hysteresis (3.00%), a satisfactory response time (28.69 s), and a fast recovery time (0.19 s). The composite sensor is fairly stable and durable even after 24 h soaking in water. Furthermore, embedding a humidity sensor into a face mask realizes real-time monitoring of human breath and cough, suggesting promising applications in respiratory monitoring.  相似文献   

10.
The heat capacity of two glass formers 5*CB and 8*OCB, each of which has two crystalline polymorphs (phases I and II) as well as a glass phase, was determined between 0.35 K and 20 K. The T-linear term of the heat capacity becomes significant below 1 K for both glasses. The glassy crystalline phase II of 5*CB also shows such contribution, which is consistent with the existence of a residual entropy. Unexpectedly, however, the ‘stable’ phase II of 8*OCB shows the similar contribution, indicating that this phase is disordered, whereas the glassy crystalline phase I shows no such contribution.  相似文献   

11.
Young's modulus and stress-optical coefficient of self-sustained gel film of CH3SiO3/2 were measured. Young's modulus varied from 1.1 to 1.5 GPa, depending on the structural state of the film. It increased with an increase in the degree of polymerization that was induced by heat treatments, and also increased with subsequent exposure to the ambient condition. The stress-optical coefficient was 6.3 × 10–12 Pa–1 for a sample treated at 120°C. The compliance of the film seems to depend mainly on the intermolecular structure of Si–CH3...CH3–Si as well as hydrogen bonding due to silanols and adsorbed water.  相似文献   

12.
In this article we report the synthesis of polypyrrole incorporated nickel oxide multi walled carbon nanotube (NiO@NMWCNT/PPy) composites by thermal reduction protocol for supercapacitor applications. The structural and morphological properties of the composites were confirmed by the aid of X-ray diffraction (XRD), Field-emission scanning electron microscope (FE-SEM) with energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and Field-emission transmission electron microscopy (FE-TEM) analysis indicating the hexagonal crystal structure of NiO decorated on NMWCNT/Ppy. The electrochemical characteristics of the NiO@MWCNT/PPy composite were analyzed in the presence of 2 M KOH as an electrolyte. The NiO@NMWCNT/PPy nanostructured composite produced a plenty of active sites for ion migration reactions that facilitate the energy storage mechanism. As a proof of concept demonstration, the NiO@NMWCNT/PPy composite was explored as an electrode materials in supercapacitor and exhibited specific capacitance of 395 F g−1 and cyclic stability up to 5000 cycles at 0.5 A g−1. Enhanced performance of composite is attributed to the incorporation of polypyrrole in NiO@NMWCNT. The improved capacitance and cyclic stability demonstrated by the composite indicates the NiO@NMWCNT/PPy to be a promising candidate for supercapacitor applications.  相似文献   

13.
This paper reports a poly-Nile Blue (PNB) sensing film based electrochemical sensor and the application in food analysis as a possible alternative for electrochemical detection of nitrite. The PNB-modified electrode in the sensor was prepared by in situ electropolymerization of Nile Blue at a prepolarized glassy carbon (GC) electrode and then characterized by cyclic voltammetry (CV) and pulse voltammetry in phosphate buffer (pH 7.1). Several key operational parameters affecting the electrochemical response of PNB sensing film were examined and optimized, such as polarization time, PNB film thickness and electrolyte pH values. As the electroactive PNB sensing film provides plenty of active sites for anodic oxidation of nitrite, the nitrite sensor exhibited high performance including high sensitivity, low detection limit, simple operation and good stability at the optimized conditions. The nitrite sensor revealed good linear behavior in the concentration range from 5.0 × 10−7 mol L−1 to 1.0 × 10−4 mol L−1 for the quantitative analysis of nitrite anion with a limit of detection of 1.0 × 10−7 mol L−1. Finally, the application in food analysis using sausage as testing samples was investigated and the results were consistent with those obtained by standard spectrophotometric method.  相似文献   

14.
Carbon fillers including multi-walled carbon nanotubes (MWCNTs), carbon black (CB) and graphite were introduced in a cyanate ester (CE) resin, respectively. The effects of the fillers on the electrical and thermal conductivity of the resin were measured and analyzed based on the microscopic observations. MWCNTs, CB and graphite exhibited percolation threshold at 0.1 wt%, 0.5 wt% and 10 wt%, respectively. The maximal electrical conductivity of the composites was 1.08 S/cm, 9.94 × 10−3 S/cm and 1.70 × 10−5 S/cm. MWCNTs showed the best enhancement on the electrical conductivity. The thermal behavior of the composites was analyzed by calorimetry method. Incorporation of MWCNTs, CB and graphite increased the thermal conductivity of CE resin by 90%, 15% and 92%, respectively. Theoretical models were introduced to correlate the thermal conductivity of the CE/MWCNTs composite. The interfacial thermal resistance between CE resin and MWCNTs was 8 × 10−8 m2K/W and the straightness ratio was 0.2. The MWCNTs were seriously entangled and agglomerated. Simulation results revealed that thermal conductivity of the CE/MWCNTs composites can be substantially elevated by increasing the straightness ratio and/or filler content of MWCNTs.  相似文献   

15.
The Young's modulus of a microcrystalline cellulose   总被引:3,自引:0,他引:3  
This research is concerned with an investigation into the determination of the micromechanical properties of particulate form of cellulose; namel microcr stalline cellulose. Using the technique of Raman spectroscop the shift in the 1095cm–1 Raman band, characteristic of cellulose, with strain is monitored and compared to the deformation of natural cellulose fibres (flax and hemp). From the values of the shift rate of the 1095cm–1 band for flax and hemp and the experimentally-determined value for microcrystalline cellulose the value for the Young's modulus of microcrystalline cellulose was estimated to be 25±4GPa. It has been shown that this value is consistent with the measured degree of crystallinity of microcrystalline cellulose. Theoretical modelling has also enabled the Young's modulus for compacted microcrystalline cellulose to be determined for fibres in either 2-D in-plane and 3-D arrangements. These values have been show to be consistent with recent direct measurements of the modulus of compacted material.  相似文献   

16.
This work presents the first polymer approach to detect metal ions using AlGaN/GaN transistor-based sensor. The sensor utilised an AlGaN/GaN high electron mobility transistor-type structure by functionalising the gate area with a polyvinyl chloride (PVC) based ion selective membrane. Sensors based on this technology are portable, robust and typically highly sensitive to the target analyte; in this case Hg2+. This sensor showed a rapid and stable response when it was introduced to solutions of varying Hg2+ concentrations. At pH 2.8 in a 10−2 M KNO3 ion buffer, a detection limit below 10−8 M and a linear response range between 10−8 M-10−4 M were achieved. This detection limit is an order of magnitude lower than the reported detection limit of 10−7 M for thioglycolic acid monolayer functionalised AlGaN/GaN HEMT devices. Detection limits of approximately 10−7 M and 10−6 M in 10−2 M Cd(NO3)2 and 10−2 M Pb(NO3)2 ion buffers were also achieved, respectively. Furthermore, we show that the apparent gate response was near-Nernstian under various conditions. X-ray photoelectron spectroscopy (XPS) experiments confirmed that the sensing membrane is reversible after being exposed to Hg2+ solution and rinsed with deionised water. The success of this study precedes the development of this technology in selectively sensing multiple ions in water with use of the appropriate polymer based membranes on arrays of devices.  相似文献   

17.
The hollow fiber composite membrane involving Zr0.84Y0.16O1.92 (YSZ) as an oxygen ionic conductor and La0.8Sr0.2MnO3−δ (LSM) as an electronic conductor was explored for oxygen separation application. The hollow fiber precursor was prepared by the phase-inversion process, and transformed to a gas-tight ceramic by sintering at 1350 °C. The as-prepared fiber exhibited a thermal expansion coefficient of 11.1 × 10−6 K−1 and a three-point bending strength of 152 ± 12 MPa. An oxygen permeation flux of 2.1 × 10−7 mol cm−2 s−1 was obtained under air/He gradient at 950 °C for a hollow fiber of length 57.00 mm and wall thickness 0.16 mm. The oxygen permeation flux remained unchanged when the sweeping gas was changed from helium to high concentration of CO2. Considering the satisfactory trade-off between the permeability and stability, the YSZ–LSM hollow fiber is promising for oxygen production applications.  相似文献   

18.
Carbon black (CB)-filled immisicible thermoplastic/thermosetting polymer blends consisting of polypropylene (PP) and Novolac resin were reported in this paper. The PP/Novolac/CB blends with varied compositions and different processing sequences were prepared by melt-mixing method. The CB distribution, conductive mechanism and the relationship between morphology and electrical properties of the PP/Novolac/CB blends were investigated. Scanning electron microscopy (SEM), optical microscopy and extraction experiment results showed that in PP/Novolac blends CB particles preferentially localized in the Novolac phase, indicating CB has a good affinity with Novolac resin. The incorporation of CB changed the spherical particles of the dispersed Novolac phase into elongated structure. With increasing Novolac content, the elongation deformation of Novolac phase became more obvious and eventually the blends developed into co-continuous structure, which form double percolation and decrease the percolation threshold. When CB was initially blended with PP and followed by the addition of Novolac resin, the partial migration of CB from PP to the Novolac phase was possibly occurred. The addition of Novolac to PP evidently increases the storage modulus G′, loss modulus G″ and complex viscosity η. The addition of CB to PP/Novolac blends further increase η, and it increases with increasing CB loading, which was related to the change of composite morphology.  相似文献   

19.
SU-8 is a chemically amplified, epoxy-based negative photoresist typically used for producing ultrathick resist layers during device manufacturing in the semiconductor industry. As a simple resist, SU-8 has garnered attention as a possible material for a variety of biomedical applications, including tissue engineering, drug delivery, as well as cell-based screening and sensing. However, as a hydrophobic material, the use of SU-8 is limited due to a high degree of nonspecific adsorption of biomolecules, as well as limited cell attachment. In this work, surface chemistry is utilized to modify the SU-8 surface by covalently attaching poly(ethylene glycol) (PEG) to increase biofunctionality and improve its nonfouling properties. Different molecular weights and concentrations of PEG were used to form films of various grafting densities on SU-8 surfaces. X-ray photoelectron spectroscopy (XPS) was used to verify the presence of PEG moieties on the SU-8 surface. High-resolution C1s spectra show that, with an increase in concentration and immobilization time, the grafting density of PEG also increases. Further, a standard overlayer model was used to calculate the thickness of the PEG films formed. The effect of PEG-modified SU-8 was examined in terms of protein adsorption on the surface and fibroblast-surface interactions.  相似文献   

20.
Rubber composites were prepared for elastomer slab by mixing barium titanate (BaTiO3), carbon nanotube (CNT), carbon black (CB), and room-temperature vulcanized (RTV) silicone rubber. An electrode was prepared from composite for energy harvesting with fillers such as CB and CNT, and RTV thinner was used to improve the processing of the specimen. At 50 phr of BaTiO3, there is an increase in compressive modulus by 180%. There was a correlation between prestrain and biaxial strain in enhancing the energy generation. After poling of the rubber composite containing 50 phr of BaTiO3 at 11 kV/mm, the energy harvesting was increased at all strains. In durability test at 70 phr of BaTiO3 for 60% cyclic biaxial strain, the drop in voltage from the piezoelectric energy harvesting was almost zero for 3000 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号