首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
通过表面引发原子转移自由基聚合在固定了引发剂的硅表面接枝了聚甲基丙烯酸叔丁酯(PtBMA),而后通过水解得到聚甲基丙烯酸(PMAA)聚合物刷.通过X射线光电子能谱、椭圆偏振仪和水接触角测试证明了接枝改性的成功.研究发现PMAA改性表面的浸润性和对蛋白质的吸附行为都具有一定的pH响应性.在较低pH值时改性表面相对疏水,随...  相似文献   

2.
We report on the fabrication of micropatterned polymer surfaces that allow the reversible inversion of surface topography, charge, and wettability. Micropatterned surfaces were prepared by grafting two oppositely charged polyelectrolytes (poly(acrylic acid) and poly(2-vinylpyridine)) using a combination of photolithography, "lift off", and "grafting to" techniques. The switchable surfaces are of interest in microprinting and for the design of microfluidic devices and programmed protein adsorption.  相似文献   

3.
A novel switchable solvent (SS) extraction methodology has been used for the enrichment of aluminium (Al) in acid‐digested blood samples of patients with neurological disorders before proceeding to flame atomic absorption spectrometry. 1,8‐Diazabicyclo[5.4.0]undec‐7‐ene and decanol in combination made a SS which reversibly changes from hydrophobic (nonpolar) to hydrophilic (polar) according to switch‐on and switch‐off phenomena in aqueous medium by exposure to anti‐solvent trigger (CO2). The SS polar micro‐emulsion was switched on by bubbling CO2, and switched off by heating from 40 to 70°C with exposure to N2 gas. The changes obtained in the structure and physical properties of the SS due to switching from lower polarity to higher polarity were investigated using Fourier transform infrared spectroscopic analysis. The SS was effectively analysed as an extractive medium for hydrophobic chelate of Al with 3,5,7,2,4‐pentahydroxyflavone (morin) and extracted in SS. Then hydrophobic enriched Al‐morin‐SS was treated with 1.0 M HNO3 and CO2 purging at various time intervals, switch to a miscible polar hydrophilic monophase state. The SS was easily recycled up to six times for further enrichment process. For the developed method, various parameters were optimized such as pH, volume of chelating reagent, CO2 purging time and pressure, and rate of heating. Under favourable conditions, enhancement factor and limit of detection were observed as 25 and 0.47 μg l?1, respectively, for 10 ml of samples/standards solution. The accuracy of the developed method was determined using certified reference material (SRM 3101a), with a standard addition procedure. The method was used for the pre‐concentration of Al in blood samples of patients with neurological disorders.  相似文献   

4.
In this work, a series of block copolymers of poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (PHFBMA‐b‐PDMAEMA) were synthesized via photo‐induced atom transfer radical polymerization (photoATRP) at room temperature. By the introduction of PDMAEMA segment, the hydrophilicity of the silicon wafer surface spin‐coated with PHFBMA homopolymer was improved. Furthermore, the study of tunable surface wettability showed that the surface wettability was pH‐dependent and thermal‐independent at pH 2 and 10. The as‐fabricated surface coated with PHFBMA110b‐PDMAEMA187 showed switchable water contact angle from 85.4° at pH > 4 to 55.0° at pH 2 due to the protonation and deprotonation of tertiary amine groups of PDMAEMA. However, because of the ascendancy of protonated PDMAEMA at pH 2 and the decreased LCST at pH 10, the wettability of the as‐prepared surfaces was thermal‐insensitive. Finally, surface morphology and composition investigation showed that the property of wettability‐controllable surface was not only influenced by surface composition, but also affected by chain conformation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3868–3877  相似文献   

5.
The manipulation of interfacial properties has broad implications for the development of high‐performance coatings. Metal–phenolic networks (MPNs) are an emerging class of responsive, adherent materials. Herein, host–guest chemistry is integrated with MPNs to modulate their surface chemistry and interfacial properties. Macrocyclic cyclodextrins (host) are conjugated to catechol or galloyl groups and subsequently used as components for the assembly of functional MPNs. The assembled cyclodextrin‐based MPNs are highly permeable (even to high molecular weight polymers: 250–500 kDa), yet they specifically and noncovalently interact with various functional guests (including small molecules, polymers, and carbon nanomaterials), allowing for modular and reversible control over interfacial properties. Specifically, by using either hydrophobic or hydrophilic guest molecules, the wettability of the MPNs can be readily tuned between superrepellency (>150°) and superwetting (ca. 0°).  相似文献   

6.
We report the preparation of nanostructured adaptive polymer surfaces by diffusion of an amphihilic block copolymer toward the interface. The surface segregation of a diblock copolymer, polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA), occurred when blended with high molecular weight polystyrene employed as a matrix. On annealing, the polymer surfaces changed both the chemical composition and the hydrophilicity depending on the environment and pH, respectively. By exposure to either water vapor or air, the surface wettability varied between hydrophilic and hydrophobic. In addition, surface enrichment on diblock copolymer by water vapor annealing led to self‐assembly occurring at the interface. Hence, nanostructured domains can be observed by AFM in liquid media. Moreover, the PAA segments placed at the interface respond to pH and can switch from an extended hydrophilic state at basic pH values to a collapsed hydrophobic state in acidic media. Accordingly, the surface morphology changed from swelled micelles to nanometer size holes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2982–2990, 2010  相似文献   

7.
Summary: In this article, we designed and synthesized novel segmented poly(carbonate urethane)s containing both hydrophobic fluorinated alkyl group and hydrophilic phosphatidylcholine polar head groups on the side chain. The contact angle measurement, XPS, together with ATR‐IR investigation indicated a reversible overturn of the phosphatidylcholine groups with the movement of the hydrophobic fluorinated alkyl groups when the samples were treated in dry air or water. The change in environment from air to water induced a reorganization of the surface in order to minimize the interfacial free energy, resulting in a macroscopic change of surface wettability. The good environmental responsiveness of such biomembrane‐mimicking films may find successful applications as biomaterials.

Environmentally responsive surface using FPCPCU50 as an example; FPCPCU50 coated on aligned carbon nanotube film and dried in vacuum at 50 °C for 7 h and sample c treated in hot water at 80 °C for 1 h.  相似文献   


8.
《先进技术聚合物》2018,29(10):2601-2611
Biomaterials and their host organism's quintessential place of interaction are the surfaces of materials, as transportation of liquids within microchannels requires hydrophilic surfaces. Modifying the hydrophobic surface of polydimethylsiloxane (PDMS) into a hydrophilic one which can be used in biomaterials remains a big challenge. Herein, PDMS‐hydroxyethylmethacrylate (HEMA) films were prepared by the condensation of PDMS using isophorone diisocyanate as a cross‐linker, followed by the incorporation of HEMA via radical copolymerization. The as‐prepared PDMS‐HEMA films were thereafter hydrophilized via physical treatment with heptamethyltrisiloxane. The surface properties of the obtained PDMS‐HEMA films were characterized in wettability, morphology, topography, swelling, mechanical properties, and protein adsorption. Compared to pristine PDMS‐HEMA as control, the surface wettability, roughness, and protein adsorption of the hydrophilized PDMS‐HEMA films were significantly improved while the films also exhibited excellent optical properties. However, the improvement of the swelling properties remains insignificant, indicating that the interior morphology was still based on the hydrophobic siloxane PDMS. The long‐term hydrophilicity was considered good as no significant hydrophobic recovery was noticeable in a period of 5 months after treatment.  相似文献   

9.
Photoresponsive monolayers of hydrophilically substituted azobenzenes have been prepared by reaction on aminosilane monolayers on silicon surfaces. Grafting densities in the 0.2-1.0 molecule/nm(2) range were determined by X-ray reflectometry. The monolayers exhibit reversible photoisomerization, switching from a more hydrophilic trans state to a less hydrophilic cis state upon UV irradiation, in contrast with the usual behavior of most azobenzene monolayers that switch from a less to a more hydrophilic state. This indicates that the wettability is not dominated by the change in the dipole moment of the azobenzene moiety but originates from variations in the composition of the outer surface of the monolayers resulting from the reorientation of the substituent groups. The light-driven change in the water contact angle correlates linearly with the grafting density but remains small. However, the wettability contrast can be increased by forcing the molecules to stand in an improved vertical orientation, either by densifying the underlying aminosilane monolayer or by filling the voids left at the bottom of the layer of grafted azobenzene molecules.  相似文献   

10.
This work explores coatings with thermally switchable wetting behavior, based on block copolymers that possess both hydrophilic and hydrophobic segments. The amphiphilic block copolymers were synthesized by coupling allyl-ended poly(ethylene oxide) (PEO) and hydride-ended poly(dimethylsiloxane) (PDMS) oligomers via a Pt catalyst. One near-symmetric diblock possessed an order-disorder transition temperature (TODT) of 64 °C. When cooled through TODT in ambient air, the PDMS domains wet the film's surface, producing a hydrophobic coating with a water contact angle (CA) = 90°. However, when cooled in humidified air, hydrophilic PEO domains form at the surface, yielding CA = 30–40°. The coatings can be reversibly switched between the two states by reheating above TODT, in the appropriate environment, and then cooling, rapidly generating the desired room-temperature surface wettability. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 135–140  相似文献   

11.
Protein adhesion plays a major role in determining the biocompatibility of materials. The first stage of implant integration is the adhesion of protein followed by cell attachment. Surface modification of implants (surface chemistry and topography) to induce and control protein and cell adhesion is currently of great interest. This communication presents data on protein adsorption (bovine serum albumin and fibrinogen) onto model hydrophobic (CH(3)) and hydrophilic (OH) surfaces, investigated using a quartz crystal microbalance (QCM) and grazing angle infrared spectroscopy. Our data suggest that albumin undergoes adsorption via a single step whereas fibrinogen adsorption is a more complex, multistage process. Albumin has a stronger affinity toward the CH(3) compared to OH terminated surface. In contrast, fibrinogen adheres more rapidly to both surfaces, having a slightly higher affinity toward the hydrophobic surface. Conformational assessment of the adsorbed proteins by grazing angle infrared spectroscopy (GA-FTIR) shows that after an initial 1 h incubation few further time-dependent changes are observed. Both proteins exhibited a less organized secondary structure upon adsorption onto a hydrophobic surface than onto a hydrophilic surface, with the effect observed greatest for albumin. This study demonstrates the ability of simple tailor-made monochemical surfaces to influence binding rates and conformation of bound proteins through protein-surface interactions. Current interest in biocompatible materials has focused on surface modifications to induce rapid healing, both of implants and for wound care products. This effect may also be of significance at the next stage of implant integration, as cell adhesion occurs through the surface protein layer.  相似文献   

12.
Poly(N‐isopropylacrylamide) (PNIPAAm) homopolymers synthesized by reversible addition–fragmentation chain transfer polymerization were used as macro‐chain‐transfer agents to synthesize smart amphiphilic block copolymers with a switchable hydrophilic–hydrophobic block of PNIPAAm and a hydrophilic block of poly(N‐dimethylacrylamide). All polymers were characterized by gel permeation chromatography, 1H NMR, and differential scanning calorimetry. The reversible micelles formed by the block copolymers of various compositions in aqueous solutions were characterized by 1H NMR, dynamic light scattering, and tensiometry. Micelles were observed in the aqueous solutions when the temperature was increased to 40 °C because of the collapse of the PNIPAAm structure, which led to a PNIPAAm hydrophobic block. The drug loading capacity was illustrated with the use of the solvatochromic Reichardt's dye and measured by ultraviolet–visible. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3643–3654, 2005  相似文献   

13.
We have fabricated superhydrophobic zinc surface with reversible transformation between sliding state and adhesion by a simple hydrothermal method. Uniformly ZnO2 nanorod was obtained at 120°C. After self-assembling of a film of n-octadecanethiol, the surface with a water contact angle (CA) of 153 ± 2°, exhibited a nonwetting property. The surface showed switchable adhesion just upon introducing UV illumination and heating treatment in turn.  相似文献   

14.
Fabrication of polymer‐carbon composite nanostructure with good dispersion of each other is critical for the desired application due to the nanostructure flaws, agglomeration, and poor absorption between the 2 materials. Fabrication of superhydrophobic surface coating composites of polytetrafluoroethylene (PTFE) with multiwalled carbon nanotubes (MWCNTs) through supercritical fluid processing was explored in this study. Homogeneity of the composite was characterized by X‐ray diffraction and Raman spectroscopy studies, which reveal that the PTFE and MWCNT are uniform in the composite. Microstructural surface evaluation of field‐emission scanning electron microscope and high‐resolution transmission electron microscope studies display that the coating composite possesses roughness structures and fibrillation of the superhydrophobic surface coating. Superhydrophobic character was evaluated on fiber‐reinforced plastic (FRP) sheets, which showed that the prepared coating composite surface showed self‐cleaning properties with a high water contact angle of 162.7°. The surface wettability was studied by increasing different temperatures (30°C to 300°C) in PTFE‐MWCNT composite, which reveals that the FRP sheets were thermally stable up to 200°C and afterward; they transformed from superhydrophobic to hydrophilic state at 250°C. The superhydrophobic surfaces are thermally stable in extreme environmental conditions, and this technique may be used and extendable for large‐scale applications.  相似文献   

15.
Single-layered photopolymerized nanocomposite films of polystyrene and TiO(2) nanorods change their wetting characteristics from hydrophobic to hydrophilic when deposited on substrates with decreasing hydrophilicity. Interestingly, the addition of a second photopolymerized layer causes a swapping in the wettability, so that the final samples result converted from hydrophobic to hydrophilic or vice versa. The wettability characteristics continue to be swapped as the number of photopolymerized layers increases. In fact, odd-layered samples show the same wetting behavior as single-layered ones, while even-layered samples have the same surface characteristics as double-layered ones. Analytical surface studies demonstrate that all samples, independently of the number of layers, have similar low roughness, and that the wettability swap is due to the different concentration of the nanocomposites constituents on the samples surface. Particularly, the different interactions between the hydrophilic TiO(2) nanorods and the underlying layer lead to different amounts of nanorods exposed on the nanocomposites surface. Moreover, due to the unique property of TiO(2) to reversibly increase its wettability upon UV irradiation and subsequent storage, the wetting characteristics of the multilayered nanocomposites can be tuned in a reversible manner. In this way, a combination of substrate, number of photopolymerized layers, and external UV light stimulus can be used in order to precisely control the surface wettability properties of nanocomposite films, opening the way to a vast number of potential applications in microfluidics, protein assays, and cell growth.  相似文献   

16.
In order to produce pH‐ and voltage‐switchable superhydrophobic surfaces, PEDOT derivatives containing various proportions of a EDOT monomer containing carboxylic groups (EDOT? COOH) and EDOT monomer‐containing dodecyl chains (EDOT? O? H12) are elaborated. The surface morphology and roughness depend highly on the proportion of the monomers. Superhydrophobic properties are reached for a mol % of EDOT? COOH between 0 and 25 %. It is possible to switch from superhydrophobic to hydrophilic (θwater until about 45°) by electrochemical reduction at low voltage (?1 V vs SCE) to remove the doping anions, following by treatment with NaOH to change the carboxylic groups into carboxylate. By elaborating smooth surfaces of each polymer, the effect of each treatment is reported. The reversibility of the reactions is also reported.  相似文献   

17.
The manipulation of interfacial properties has broad implications for the development of high-performance coatings. Metal–phenolic networks (MPNs) are an emerging class of responsive, adherent materials. Herein, host–guest chemistry is integrated with MPNs to modulate their surface chemistry and interfacial properties. Macrocyclic cyclodextrins (host) are conjugated to catechol or galloyl groups and subsequently used as components for the assembly of functional MPNs. The assembled cyclodextrin-based MPNs are highly permeable (even to high molecular weight polymers: 250–500 kDa), yet they specifically and noncovalently interact with various functional guests (including small molecules, polymers, and carbon nanomaterials), allowing for modular and reversible control over interfacial properties. Specifically, by using either hydrophobic or hydrophilic guest molecules, the wettability of the MPNs can be readily tuned between superrepellency (>150°) and superwetting (ca. 0°).  相似文献   

18.
We described a facile approach to rapidly achieve the reversible oil wettability and adhesion transition on the copper substrate. Plasma treatment and surface fluorination were used to tune the surface composition, and this tunability of the surface composition, along with the stable surface roughness, gave rise to the switchable wettability varying from superoleophobicity to superoleophilicity and reversible oil adhesion between sliding superoleophobicity and sticky superoleophobicity. It took only 1.25 min to realize the whole wettability transition and 5 min for the whole adhesion transition. Additionally, the application of a sticky superoleophobic surface was demonstrated. This study represents an important addition to the field of functional superoleophobic materials.  相似文献   

19.
Summary: A responsive polymer composite film was generated by the use of reversibly switchable surface morphology of polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) films in response to different block selective solvents on the rough isotactic poly(propylene) (i‐PP) substrate. The maximum difference of the water contact angle of the composite films increased from 22.6° of PS‐b‐PMMA films on the smooth substrate to 42.6° when they were treated by PS and PMMA selective solvents, respectively. The mechanisms of the responsive extent enhanced and the superhydrophobicity of the composite films were discussed in detail.

Schematic illustration of how to fabricate a wettability‐responsive composite film: (a) on the flat Si substrate, (b) on the rough PP substrate.  相似文献   


20.
Liquid crystals displays (LCDs) currently dominate the display market, wherein a wide viewing angle is considered as one of the most important characteristics. However, for LCDs with wide viewing angles, some private information inevitably becomes more visible; thus, an LCD with a switchable viewing angle has attracted greater interest. Here, we report a novel switchable viewing angle film that can make the viewing angle of an LCD electrically switchable between ±30° and ±60°, i.e. between an anti-peeping mode and a share mode, by 5.0 V is turned on and off, respectively. The response time necessary to change between the modes is in milliseconds. It is believed that it has potential applications in LCDs with high quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号