首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe herein a catalytic, enantioselective process for the synthesis of 4H‐chromenes which are important structural elements of many natural products and biologically active compounds. A sequence comprising a conjugate addition of β‐diketones to in situ generated ortho‐quinone methides followed by a cyclodehydration reaction furnished 4‐aryl‐4H‐chromenes in generally excellent yields and high optical purity. A BINOL‐based chiral phosphoric acid was employed as a Brønsted acid catalyst which converted ortho‐hydroxy benzhydryl alcohols into hydrogen‐bonded ortho‐quinone methides and effected the carbon–carbon bond‐forming event with high enantioselectivity.  相似文献   

2.
We report herein a powerful and highly stereoselective protocol for the domino‐type reaction of diazoesters with ortho‐quinone methides generated in situ to furnish densely functionalized chromans with three contiguous stereogenic centers. A transition‐metal and a Brønsted acid catalyst were shown to act synergistically to produce a transient oxonium ylide and ortho‐quinone methide, respectively, in two distinct cycles. These intermediates underwent subsequent coupling in a conjugate‐addition–hemiacetalization event in generally good yield with excellent diastereo‐ and enantioselectivity.  相似文献   

3.
Described herein is a general and mild catalytic asymmetric 1,6‐conjugate addition of para‐quinone methides (p‐QMs), a class of challenging reactions with previous limited success. Benefiting from chiral Brønsted acid catalysis, which allows in situ formation of p‐QMs, our reaction expands the scope to general p‐QMs with various substitution patterns. It also enables efficient intermolecular formation of all‐carbon quaternary stereocenters with high enantioselectivity.  相似文献   

4.
A new approach to the utilization of highly reactive and unstable ortho‐quinone methides (o‐QMs) in catalytic asymmetric settings is presented. The enantioselective reactions are catalysed by bifunctional organocatalysts, and the o‐QM intermediates are formed in situ from 2‐sulfonylalkyl phenols through base‐promoted elimination of sulfinic acid. The use of mild Brønsted basic conditions for transiently generating o‐QMs in catalytic asymmetric processes is unprecedented, and allows engaging productively in the reactions nucleophiles such as Meldrum’s acid, malononitrile and 1,3‐dicarbonyls. The catalytic transformations give new and general entries to 3,4‐dihydrocoumarins, 4H‐chromenes and xanthenones. These frameworks are recurring structures in natural product and medicinal chemistry, as testified by the formal syntheses of (R)‐tolterodine and (S)‐4‐methoxydalbergione from the catalytic adducts.  相似文献   

5.
A convergent and highly stereoselective [4+2] cycloaddition of in situ‐generated ortho‐Quinone methides (o‐QMs) and azlactone enols has been successfully developed through a triple Brønsted acid catalysis strategy. This protocol provides an efficient and mild access to various densely functionalized dihydrocoumarins bearing adjacent quaternary and tertiary stereogenic centers in high yields with excellent diastereo‐ and enantioselectivity.  相似文献   

6.
A novel ring‐expansion reaction of epoxides under Brønsted base catalysis was developed. The formal [3+2] cycloaddition reaction of β,γ‐epoxy esters with imines proceeds in the presence of triazabicyclodecene (TBD) as a superior Brønsted base catalyst to afford 2,4,5‐trisubstituted 1,3‐oxazolidines in a highly diastereoselective manner. This reaction involves the ring opening of the epoxides with the aid of the Brønsted base catalyst to generate α,β‐unsaturated esters having an alkoxide at the allylic position, which would formally serve as a synthetic equivalent of the 1,3‐dipole, followed by a cycloaddition reaction with imines in a stepwise fashion. This methodology enables the facile synthesis of enantioenriched 1,3‐oxazolidines from easily accessible enantioenriched epoxides.  相似文献   

7.
A Brønsted acid‐catalyzed asymmetric Nazarov cyclization of acyclic α‐alkoxy dienones has been developed. The reaction offers access to chiral cyclopentenones in a highly enantioselective manner. The reaction is complementary to our previously reported Brønsted acid‐catalyzed electrocyclization reactions, which provided differently substituted optically active cyclopentenones with a fused tetrahydropyrane ring in good yields and with excellent enantioselectivities.  相似文献   

8.
The in-situ generation of o-quinone methides and their inverse-electron-demand Diels–Alder reaction in the presence of pentacarboxycyclopentadiene—an organic Brønsted acid—has been reported. The synthesis of xanthenones and chromanones in good to excellent yields from the [4 + 2] cycloaddition of quinone methides with 1, 3-dicarbonyls and Meldrum's acid has been accomplished. The development of this method helps in generating a number of biologically potent heterocycles with medicinal applications.  相似文献   

9.
The reaction of indoles and stabilized cyclopropyl alkynes under gold‐ and/or gold & Brønsted acid‐catalysis provided access to highly substituted tetrahydrocarbazoles. A mechanistic study revealed the complex mechanism underlying these processes and the opportunistic cooperation of Lewis and Brønsted acid‐catalysts towards the formation of complex molecular scaffolds.  相似文献   

10.
《中国化学》2017,35(10):1529-1539
A series of mesoporous Nb and Nb‐W oxides were employed as highly active solid acid catalysts for the conversion of glucose to 5‐hydroxymethylfurfural (HMF ). The results of solid state 31P MAS NMR spectroscopy with adsorbed trimethylphosphine as probe molecule show that the addition of W in niobium oxide increases the number of Brønsted acid sites and decreases the number of Lewis acid sites. The catalytic performance for Nb‐W oxides varied with the ratio of Brønsted to Lewis acid sites and high glucose conversion was observed over Nb5W5 and Nb7W3 oxides with high ratios of Brønsted to Lewis acid sites. All Nb‐W oxides show a relatively high selectivity of HMF , whereas no HMF forms over sulfuric acid due to its pure Brønsted acidity. The results indicate fast isomerization of glucose to fructose over Lewis acid sites followed by dehydration of fructose to HMF over Brønsted acid sites. Moreover, comparing to the reaction occurred in aqueous media, the 2‐butanol/H2O system enhances the HMF selectivity and stabilizes the activity of the catalysts which gives the highest HMF selectivity of 52% over Nb7W3 oxide. The 2‐butanol/H2O catalytic system can also be employed in conversion of sucrose, achieving HMF selectivity of 46% over Nb5W5 oxide.  相似文献   

11.
We report a multi‐component asymmetric Brønsted acid‐catalyzed aza‐Darzens reaction which is not limited to specific aromatic or heterocyclic aldehydes. Incorporating alkyl diazoacetates and, important for high ee's, ortho‐tert‐butoxyaniline our optimized reaction (i.e. solvent, temperature and catalyst study) affords excellent yields (61–98 %) and mostly >90 % optically active cis‐aziridines. (+)‐Chloramphenicol was generated in 4 steps from commercial starting materials. A tentative mechanism is outlined.  相似文献   

12.
Herein, we describe the first catalytic asymmetric intramolecular [4+2] cycloaddition of in situ generated ortho‐quinone methides. In the presence of a confined chiral imidodiphosphoric acid catalyst, various salicylaldehydes react with dienyl alcohols to give transient ortho ‐quinone methide intermediates, which undergo an intramolecular [4+2] cycloaddition to provide highly functionalized furanochromanes and pyranochromanes in excellent diastereoselectivity and enantioselectivity.  相似文献   

13.
A detailed FTIR study of the effects of steaming and acid leaching on protonated Y faujasite (FAU) and EMT zeolites is provided and the results are thoroughly analysed. In particular, emphasis is placed on the Brønsted acidic evolution and acidic strength measurements for a large series of as‐modified zeolites using CO as a sensitive probe to distinguish various protonic sites. While an increase of acidity for framework OH groups is observed during the strengthening of dealumination for both FAU and EMT series, the steaming process also generates a large variety of additional Brønsted acidic groups. Regarding acidic strength, these heterogeneous OH groups are sensitive to post‐treatments and their existence strongly depends on the initial composition of the zeolites. The presence of residual Na+ cations in the starting materials induces dramatic Brønsted acidic changes after steaming. As a result, steamed zeolites that initially contain traces of sodium possess unusual acidic Brønsted groups with low acidity. This result contradicts the trend generally observed with framework OH groups, for which steaming results in an increase of Brønsted acidic strength. The study reveals that the situation is indeed more complex, as some compositions and post‐treatments strongly influence the Brønsted acidity of as‐steamed zeolites both in their nature and their corresponding acidic strength. By linking these IR‐compiled features to the as‐exposed modifications, a large acidity scale better suited to characterizing catalysts having Brønsted acidity expanding from lowest to highest strength is proposed.  相似文献   

14.
The first 1,3‐dipolar cycloadditions (1,3‐DCs) of 1,2‐disubstituted alkynes with aldehyde‐generated azomethine ylides have been established, leading to the efficient synthesis of poly‐substituted 2,5‐dihydropyrroles.The Brønsted acid‐catalyzed three‐component 1,3‐DCs of but‐2‐ynedioates, aldehydes, and diethyl 2‐aminomalonate tolerate a wide range of substrates, offering structurally diverse poly‐substituted 2,5‐dihydropyrroles in high yields. This protocol not only provides an easy and efficient approach to poly‐substituted 2,5‐dihydropyrroles but also greatly enriches the chemistry of 1,3‐DCs, especially alkyne‐involved 1,3‐DCs.  相似文献   

15.
A cooperative catalytic system established by the combination of an iron salt and a chiral Brønsted acid has proven to be effective in the asymmetric Friedel–Crafts alkylation of indoles with β‐aryl α′‐hydroxy enones. Good to excellent yields and enatioselectivities were observed for a variety of α′‐hydroxy enones and indoles, particularly for the β‐aryl α′‐hydroxy enones bearing an electron‐withdrawing group at the para position of the phenyl ring (up to 90 % yield and 91 % ee). The proton of the chiral Brønsted acid, the Lewis acid activation site, as well as the inherent basic site for the hydrogen‐bonding interaction of the Brønsted acid are responsible for the high catalytic activities and enantioselectivities of the title reaction. A possible reaction mechanism was proposed. The key catalytic species in the catalytic system, the phosphate salt of FeIII, which was thought to be responsible for the high activity and good enantioselectivity, was then confirmed by ESIMS studies.  相似文献   

16.
A Brønsted acid enabled nickel‐catalyzed hydroalkenylation of aldehydes and styrene derivatives has been developed. The Brønsted acid acts as a proton shuttle to transfer a proton from the alkene to the aldehyde, thereby leading to an economical and byproduct‐free coupling. A series of synthetically useful allylic alcohols were obtained through one‐step reactions from readily available styrene derivatives and aliphatic aldehydes in up to 88 % yield and with high linear selectivity.  相似文献   

17.
The first copolymerization of acrylate and methacrylate with nonpolar 1‐alkenes in the presence of Brønsted acids as complexation agents has been reported. The addition of both homogeneous and heterogeneous Brønsted acids resulted in increased monomer conversion and 1‐alkene incorporation. Further, the heterogeneous Brønsted acids can be recycled without loss of activity. A direct correlation exists between the ability of the Lewis or Brønsted acid to bind to the ester group of the acrylate/methacrylate monomer and its ability to promote the copolymerization reaction. For Lewis acids, there is also a direct correlation between the charge/size ratio at the metal center and their ability to promote copolymerizations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5499–5505, 2008  相似文献   

18.
Phosphorus‐modified all‐silica zeolites exhibit activity and selectivity in certain Brønsted acid catalyzed reactions for biomass conversion. In an effort to achieve similar performance with catalysts having well‐defined sites, we report the incorporation of Brønsted acidity to metal–organic frameworks with the UiO‐66 topology, achieved by attaching phosphonic acid to the 1,4‐benzenedicarboxylate ligand and using it to form UiO‐66‐PO3H2 by post‐synthesis modification. Characterization reveals that UiO‐66‐PO3H2 retains stability similar to UiO‐66, and exhibits weak Brønsted acidity, as demonstrated by titrations, alcohol dehydration, and dehydra‐decyclization of 2‐methyltetrahydrofuran (2‐MTHF). For the later reaction, the reported catalyst exhibits site‐time yields and selectivity approaching that of phosphoric acid on all‐silica zeolites. Using solid‐state NMR and deprotonation energy calculations, the chemical environments of P and the corresponding acidities are determined.  相似文献   

19.
A new ammonium‐type zwitterion (ZI), N,N‐dihexyl‐N‐monopentyl‐3‐sulfonyl‐1‐propaneammonium (N665C3S) with adequate hydrophobicity showed reversible and highly temperature‐sensitive lower critical solution temperature (LCST)‐type phase transitions after being mixed with pure water. Generally for such compounds, those with longer alkyl chains were immiscible with water and those with shorter chains were miscible with water, regardless of temperature. A slightly more hydrophobic ZI than N665C3S showed LCST‐type phase behavior with water when it was mixed with equimolar amounts of a Brønsted acid such as trifluoromethanesulfonic acid (HTfO). The phase‐transition temperature of the ZI/Brønsted acid mixed aqueous solution was controllable by water content.  相似文献   

20.
An enantioselective direct Mannich‐type reaction catalyzed by a sterically frustrated Lewis acid/Brønsted base complex is disclosed. Cooperative functioning of the chiral Lewis acid and achiral Brønsted base components gives rise to in situ enolate generation from monocarbonyl compounds. Subsequent reaction with hydrogen‐bond‐activated aldimines delivers β‐aminocarbonyl compounds with high enantiomeric purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号