首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mn-doped CeO2 and CeO2 with the same morphology (nanofiber and nanocube) have been synthesized through hydrothermal method. When applied to benzene oxidation, the catalytic performance of Mn-doped CeO2 is better than that of CeO2, due to the difference of the concentration of O vacancy. Compared to CeO2 with the same morphology, more oxygen vacancies were generated on the surface of Mn-doped CeO2, due to the replacement of Ce ion with Mn ion. The lattice replacement has been analyzed through XRD, Raman, electron energy loss spectroscopy and electron paramagnetic resonance technology. The formation energies of oxygen vacancy on the different exposed crystal planes such as (110) and (100) for Mn-doped CeO2 were calculated by the density functional theory (DFT). The results show that the oxygen vacancy is easier to be formed on the (110) plane. Other factors influencing catalytic behavior have also been investigated, indicating that the surface oxygen vacancy plays a crucial role in catalytic reaction.  相似文献   

2.
The emergence of ceria (CeO2) as an efficient catalyst for the selective hydrogenation of alkynes has attracted great attention. Intensive research effort has been devoted to understanding the underlying catalytic mechanism, in particular the H2–CeO2 interaction. Herein, we show that the adsorption of propyne (C3H4) on ceria, another key aspect in the hydrogenation of propyne to propene, strongly depends on the degree of reduction of the ceria surface and hydroxylation of the surface, as well as the presence of water. The dissociation of propyne and the formation of methylacetylide (CH3CC‐) have been identified through the combination of infrared reflection absorption spectroscopy (IRAS) and DFT calculations. We demonstrate that propyne undergoes heterolytic dissociation on the reduced ceria surface by forming a methylacetylide ion on the oxygen vacancy site and transferring a proton to the nearby oxygen site (OH group), while a water molecule that competes with the chemisorbed methylacetylide at the vacancy site assists the homolytic dissociation pathway by rebounding the methylacetylide to the nearby oxygen site.  相似文献   

3.
4.
The construction of a heterogeneous nanocatalyst with outstanding catalytic performance via an environmentally benign and cost-effective synthetic category has long been one of the challenges in nanotechnology. Herein, we synthesized highly efficient and low-cost mesoporous morphology-dependent CuO/CeO2-Rods and CuO/CeO2-Cubes catalysts by employing a green and multifunctional polyphenolic compound (tannic acid) as the stabilizer and chelating agent for 4-nitrophenol (4-NP) reduction reaction. The CuO/CeO2-Rods exhibited excellent performance, of which the activity was 3.2 times higher than that of CuO/CeO2-Cubes. This can be connected with the higher density of oxygen vacancy on CeO2-Rods (110) than CeO2-Cubes (100), the oxygen vacancy favors anchoring CuO species on the CeO2 support, which promotes the strong interaction between finely dispersed CuO and CeO2-Rods at the interfacial positions and facilitates the electron transfer from BH4 to 4-NP. The synergistic catalytic mechanism illustrated that 4-NP molecules preferentially adsorbed on the CeO2, while H2 from BH4 dissociated over CuO to form highly active H* species, contributing to achieving efficient hydrogenation of 4-NP. This study is expected to shed light on designing and synthesizing cost-effective and high-performance nanocatalysts through a greener synthetic method for the areas of catalysis, nanomaterial science and engineering, and chemical synthesis.  相似文献   

5.
A considerable interest has been shown in the application of doped ceria (CeO2) compounds for “intermediate” (300–500 °C) temperature operation of solid oxide fuel cells. The microdomains with ordered structure of oxygen vacancy were observed in the microstructure of the M-doped CeO2-sintered bodies (where M: Gd, Y, and Dy). We have previously shown that the conductivity of doped CeO2-sintered bodies was lower when the sintered body contained large microdomains within grains. As a consequence of this observation, we have examined the grain size dependence and dopant content on conductivity in specimens where we adjust the microdomain size and a degree of oxygen vacancy ordering in the microdomains by controlling the microstructure. The microdomain size control in Dy-doped CeO2 specimens was obtained by combining pulsed electric current sintering and conventional sintering. Using these techniques, we were able to improve the conductivity in Dy-doped CeO2 specimens to a point where it became comparable to that of the more conventional Gd-doped CeO2 specimens. It is concluded that by combining ultimate high-resolution analysis of these nanostructures with the adjusting processing route design, it is possible to further develop these materials in CeO2-doped fuel cell application.  相似文献   

6.
Elimination of VOCs by catalytic oxidation is an important technology. Here, a general synergistic capture-bonding superassembly strategy was proposed to obtain the nanoscale dispersed 5.8% PtFe3−CeO2 catalyst, which showed a high toluene oxidation activity (T100=226 °C), excellent catalytic stability (125 h, >99.5%) and a good water resistance ability (70 h, >99.5%). Through the detailed XPS analysis, oxygen cycle experiment, hydrogen reduction experiment, and in-situ DRIFT experiment, we could deduce that PtFe3−CeO2 had two reaction pathways. The surface adsorbed oxygen resulting from PtFe3 nanoparticles played a dominant role, due to the fast cycling between the surface adsorbed oxygen and oxygen vacancy. In contrast, the lattice oxygen resulting from CeO2 nanorods played an important role due to the relationship between the toluene oxidation activity and the metal-oxygen bonding energy. Furthermore, DFT simulation verified Pt sites were the dominant reaction active sites during this reaction.  相似文献   

7.
Surface oxygen vacancy defects of mesoporous CeO2 nanosheets assembled microspheres(D-CeO2) are engineered by polymer precipitation, hydrothermal and surface hydrogenation strategies. The resultant D-CeO2 with a main pore diameter of 9.3 nm has a large specific surface area(~102.3 m2/g) and high thermal stability. The mesoporous nanosheets assembled microsphere structure prevents the nanosheets from aggregation, which is beneficial to effective mass tr...  相似文献   

8.
The interactions and reduction mechanisms of O2 molecule on the fully oxidized and reduced CeO2 surface were studied using periodic density functional theory calculations implementing on‐site Coulomb interactions (DFT + U) consideration. The adsorbed O2 species on the oxidized CeO2 surface were characterized by physisorption. Their adsorption energies and vibrational frequencies are within ?0.05 to 0.02 eV and 1530–1552 cm?1, respectively. For the reduced CeO2 surface, the adsorption of O2 on Ce4+, one‐electron defects (Ce3+ on the CeO2 surface) and two‐electron defects (neutral oxygen vacancy) can alter geometrical parameters and results in the formation of surface physisorbed O2, O2a? (0 < a < 1), superoxide (O2?), and peroxide (O22?) species. Their corresponding adsorption energies are ?0.01 to ?0.09, ?0.20 to ?0.37, ?1.34 and ?1.86 eV, respectively. The predicted vibrational frequencies of the peroxide, superoxide, O2a? (0 < a < 1) and physisorbed species are 897, 1234, 1323–1389, and 1462–1545 cm?1, respectively, which are in good agreement with experimental data. Potential energy profiles for the O2 reduction on the oxidized and reduced CeO2 (111) surface were constructed using the nudged elastic band method. Our calculations show that the reduced surface is energetically more favorable than the unreduced surface for oxygen reduction. In addition, we have studied the oxygen ion diffusion process on the surface and in bulk ceria. The small barrier for the oxygen ion diffusion through the subsurface and bulk implies that ceria‐based oxides are high ionic conductivity at relatively low temperatures which can be suitable for IT‐SOFC electrolyte materials. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

9.
The effective conversion of carbon dioxide (CO2) and nitrogen (N2) into urea by photocatalytic reaction under mild conditions is considered to be a more environmentally friendly and promising alternative strategies. However, the weak adsorption and activation ability of inert gas on photocatalysts has become the main challenge that hinder the advancement of this technique. Herein, we have successfully established mesoporous CeO2-x nanorods with adjustable oxygen vacancy concentration by heat treatment in Ar/H2 (90 % : 10 %) atmosphere, enhancing the targeted adsorption and activation of N2 and CO2 by introducing oxygen vacancies. Particularly, CeO2-500 (CeO2 nanorods heated treatment at 500 °C) revealed high photocatalytic activity toward the C−N coupling reaction for urea synthesis with a remarkable urea yield rate of 15.5 μg/h. Besides, both aberration corrected transmission electron microscopy (AC-TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to research the atomic surface structure of CeO2-500 at high resolution and to monitor the key intermediate precursors generated. The reaction mechanism of photocatalytic C−N coupling was studied in detail by combining Density Functional Theory (DFT) with specific experiments. We hope this work provides important inspiration and guiding significance towards highly efficient photocatalytic synthesis of urea.  相似文献   

10.
研究了低于300 ℃时两种氧化铈对稀燃阶段NOx存储性能的影响,催化剂由2%(w)Pt/Al2O3(PA)与CeO2-X(X=S,I)机械混合制备. X射线衍射(XRD),BET表面积和扫描电子显微镜(SEM)用于表征材料的物理结构. X射线光电子能谱(XPS)和H2程序升温还原(H2-TPR)用于表面Ce3+和活性氧定量. 原位漫反射傅里叶变换红外光谱(in-situ DRIFTS)用于分析表面NOx吸附物种. 相比于CeO2-I,CeO2-S 具有优良的物理化学性能,包括高比表面积、丰富的空隙结构、较高的抗老化能力及表面Ce3+浓度. 因而,Pt/Al2O3+CeO2-S 表现出优异的NOx存储能力. 此外,PA+CeO2-X(X=S,I)上存在Pt 与CeO2之间的相互作用,可提高表面氧物种的活性进而促进NO氧化及NOx存储. PA+CeO2-S上的这种相互作用要强于PA+CeO2-I. 研究表明,表面Ce3+浓度和活性氧含量对NOx存储起到重要作用. 然而经过水热处理后,Pt 与老化的氧化铈(ACS,ACI)之间的相互作用降低,并且两种氧化铈NOx存储性能显著下降. 另外,与PA+ACS(ACI)相比,PA+PACS(PACI)样品NOx存储能力得到改善,这归因于表面氧物种活性增加能促进硝酸盐的形成.  相似文献   

11.
通过简易的两步法制备一系列Co_3O_4/CeO_2异质结。其结构、形貌和微结构分别通过X射线衍射(XRD)、扫描电镜(SEM)和高分辨透射电镜(HRTEM)表征。在碱性介质中,其电催化析氧性能随着Co_3O_4/CeO_2质量比的变化而变化,并有一最佳值。当Co_3O_4和CeO_2质量比为58.5%时,在1.0 mol·L~(-1)KOH溶液中,10 mA·cm~(-2)的电流密度下,过电位为347 mV,Tafel斜率为72.7mV·dec~(-1),并且稳定性良好。此时的过电位低于Co_3O_4(440 mV)、商用RuO_2(359 mV)和CeO_2(570 mV)。X射线光电子能谱(XPS)显示Co_3O_4的部分电子向CeO_2转移。这导致复合材料的导电性提高,CeO_2表面的氧空位浓度和活性氧物种增加。  相似文献   

12.
The Mg–Ce–O powder are shown to contain periclase-type MgO and/or fluoride-type cerium oxide (CeO2) depending upon the composition (x) defined by Ce/(Ce + Mg) atomic ratio. Lattice contraction of pariclase phase of MgO (average crystallite size ~8.8 nm) at Ce content of ‘x’ = 0.20 in comparison to pure MgO (crystallite size ~9.5 nm) has been realized due to oxygen vacancy formation. The optical band gap values of CeO2 varies (3.0–3.2 eV) due to oxygen vacancy formation in CeO2 phase, crystallite size and/or Ce3+/Ce4+ ratio. Further, the addition of Ce has shown to reduce the physisorption and chemisorption of water significantly as reflected by (1) suppression of related absorption peaks and (2) absence of magnesium hydroxide, Mg(OH)2, bands in Fourier transform infrared spectra.  相似文献   

13.
Ceria-lanthana-based promoters of three-way catalysts are synthesized by two different sol-gel routes, involving nitrate precursors. The oxygen uptake ability of these compounds is measured by O2 chemisorption. The specific surface area is determined by N2 adsorption (BET). X-ray diffraction data are analyzed by Rietveld refinement, demonstrating that lanthanum forms solid solution with CeO2; its total amount in ceria depends on the competitive formation of La-Al mixed oxides and on the synthetic method. The O2 uptake ability is essentially determined by the La content in the ceria-lanthana solid solution, while it is independent on the surface area and on the CeO2 particle size. The O2 uptake ability increases with the La:Ce relative amount in the ceria-lanthana solid solution, but decreases beyond a La:Ce molar ratio greater than ?0.18. This behavior is ascribed to the stable association of vacancy-vacancy or vacancy dopant cation.  相似文献   

14.
Studying the structures of metal clusters on oxide supports is challenging due to their various structural possibilities. In the present work, a simple rule in which the number of Au atoms in different layers of Aux clusters is changed successively is used to systematically investigate the structures of Aux (x=1–10) clusters on stoichiometric and partially reduced CeO2(111) surface by DFT calculations. The calculations indicate that the adsorption energy of a single Au atom on the surface, the surface structure, as well as the Au? Au bond strength and arrangement play the key roles in determining Aux structures on CeO2(111). The most stable Au2 and Au3 clusters on CeO2(111) are 2D vertical structures, while the most stable structures of Aux clusters (x>3) are generally 3D structures, except for Au7. The 3D structures of large Aux clusters in which the Au number in the bottom layer does not exceed that in the top layer are not stable. The differences between Aux on CeO2(111) and Mg(100) were also studied. The stabilizing effect of surface oxygen vacancies on Aux cluster structures depends on the size of Aux cluster and the relative positions of Aux cluster and oxygen vacancy. The present work will be helpful in improving the understanding of metal cluster structures on oxide supports.  相似文献   

15.
Mixed conductive perovskite materials, e.g., La1−xSrxO3−δ (LSCO), have been widely investigated to understand the leverages of doping extent and composition on the oxygen permeability with the aim of developing an oxygen-transport solid electrolyte membrane. However at the present stage fabrication of a dense thin layer of perovskite oxide on a porous tubular support possessing mechanically and chemically stability at high temperatures is still a technological challenge to the endeavor. This is because the asymmetric configuration is a desired model of the commercial oxygen-permeable ceramic membrane reactor. The present work develops a new approach that allows the formation of a complete gas-tight oxygen-permeable thin membrane on the outer surface of a porous CeO2 tube by the means of slurry coating. The oxygen-permeable membrane is a dual-phase composite containing equal volume fractions of CeO2 and LSCO-80 (x = 0.8). In the membrane CeO2 particles are uniformly embedded in the continuous LSCO phase, and this highly dispersed semi-continuous structure could successfully buffer the mechanical stress generated in the LSCO phase due to mismatch of coefficient of thermal expansion (CTE) between the membrane and the support. The oxygen permeation flux tests showed a low activation energy barrier (∼30 kJ/mol) of the whole electrochemical reaction in the temperature range from 400 to 900 °C. The surface de-sorption (or the anodic) process of the oxygen has been simulated using the extended Hückel theory (EHT). The activation energy obtained from the EHT simulation is found very close to the experiment data. In addition, according to the computer simulation, surface oxygen de-sorption activation energy relies on the surface oxygen vacancy density and thus the oxygen partial pressure.  相似文献   

16.
The study reports the first attempt to address the interplay between surface and bulk in hydride formation in ceria (CeO2) by combining experiment, using surface sensitive and bulk sensitive spectroscopic techniques on the two sample systems, i.e., CeO2(111) thin films and CeO2 powders, and theoretical calculations of CeO2(111) surfaces with oxygen vacancies (Ov) at the surface and in the bulk. We show that, on a stoichiometric CeO2(111) surface, H2 dissociates and forms surface hydroxyls (OH). On the pre-reduced CeO2−x samples, both films and powders, hydroxyls and hydrides (Ce−H) are formed on the surface as well as in the bulk, accompanied by the Ce3+ ↔ Ce4+ redox reaction. As the Ov concentration increases, hydroxyl is destabilized and hydride becomes more stable. Surface hydroxyl is more stable than bulk hydroxyl, whereas bulk hydride is more stable than surface hydride. The surface hydride formation is the kinetically favorable process at relatively low temperatures, and the resulting surface hydride may diffuse into the bulk region and be stabilized therein. At higher temperatures, surface hydroxyls can react to produce water and create additional oxygen vacancies, increasing its concentration, which controls the H2/CeO2 interaction. The results demonstrate a large diversity of reaction pathways, which have to be taken into account for better understanding of reactivity of ceria-based catalysts in a hydrogen-rich atmosphere.  相似文献   

17.
In order to investigate the microscopic behavior of the crystal surface growth of the fluorinated cerium dioxide polishing powder, the adsorption and migration of the Ce, O, and F atoms on the CeO2 (111) surface were studied by using density functional theory with Hubbard correction +U. The adsorption energies of three single atoms at five high-symmetry sites and the migration activation energies along the migration pathway on the CeO2 (111) surface were calculated. Results show that the most stable adsorption sites of the Ce, O, and F atoms were the Oh, Cebri, and Cet sites, respectively. The Ce atom migrated from the Oh to the Ot site. The O atom migrated from the Cebri to the Obri site. The F atom migrated from the Cet to the Oh site. The migration activation energies of the Ce, O, and F atoms along the migration pathways were 1.526, 0.597, and 0.263 eV, respectively. The F adatom does not change the spatial configuration of the Ce and the O atoms. When the O vacancy occurs on the CeO2 (111) surface, the F adatom can make up for the O vacancy defect.  相似文献   

18.
采用不同方法制备了铈锆复合氧化物催化剂用于催化HCl氧化反应。自发沉积策略制备的CeO2@ZrO2催化剂中,超细CeO2纳米粒子均匀的镶嵌于非晶态ZrO2中。CeO2粒子显著的“尺寸效应”使得该催化剂具有更高的Ce3+和氧空位浓度,而较高的Ce3+和氧空位浓度使得催化剂具有优异的低温氧化还原性能和储释氧能力。催化性能测试表明,CeO2@ZrO2催化剂展现出最好的催化活性(1.90 gCl2·gcat-1·h-1),同时CeO2粒子周围非晶态的ZrO2阻碍CeO2的高温烧结,提高了该催化剂的稳定性。  相似文献   

19.
Ag nanoparticles grown on reduced CeO2-x thin films have been studied by X-ray photoelec-tron spectroscopy and resonant photoelectron spectroscopy of the valence band to understand the effect of oxygen vacancies in the CeO2-x thin films on the growth and interfacial elec-tronic properties of Ag. Ag grows as three-dimensional particles on the CeO2-x(111) surface at 300 K. Compared to the fully oxidized ceria substrate surface, Ag favors the growth of smaller particles with a larger particle density on the reduced ceria substrate surface, which can be attributed to the nucleation of Ag on oxygen vacancies. The binding energy of Ag3d increases when the Ag particle size decreases, which is mainly attributed to the final-state screening. The interfacial interaction between Ag and CeO2-x(111) is weak. The resonant enhancement of the 4f level of Ce3+ species in RPES indicates a partial Ce4+→Ce3+ re-duction after Ag deposited on reduced ceria surface. The sintering temperature of Ag on CeO1.85(111) surface during annealing is a little higher than that of Ag on CeO2(111) surface, indicating that Ag nanoparticles are more stable on the reduced ceria surface.  相似文献   

20.
采用不同方法制备了铈锆复合氧化物催化剂用于催化HCl氧化反应。自发沉积策略制备的CeO_2@ZrO_2催化剂中,超细CeO_2纳米粒子均匀的镶嵌于非晶态ZrO_2中。CeO_2粒子显著的"尺寸效应"使得该催化剂具有更高的Ce~(3+)和氧空位浓度,而较高的Ce~(3+)和氧空位浓度使得催化剂具有优异的低温氧化还原性能和储释氧能力。催化性能测试表明,CeO_2@ZrO_2催化剂展现出最好的催化活性(1.90 gCl2·gcat~(-1)·h~(-1)),同时CeO_2粒子周围非晶态的ZrO_2阻碍CeO_2的高温烧结,提高了该催化剂的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号