首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
In this paper we consider the weakly coupled elliptic system with critical growth
where a, b, c, d are C 1-functions defined in a bounded regular domain of N . Here we construct families of solutions which blow-up and concentrate at some points in as the positive parameter goes to zero.*The authors are supported by M.I.U.R., project Metodi variazionali e topologici nello studio di fenomeni non lineari.  相似文献   

3.
In this paper, we study and discuss the existence of multiple solutions of a class of non-linear elliptic equations with Neumann boundary condition, and obtain at least seven non-trivial solutions in which two are positive, two are negative and three are sign-changing. The study of problem (1.1):{-△u αu=f(u),x∈Ω, x∈Ω,δu/δr=0,x∈δΩ,is based on the variational methods and critical point theory. We form our conclusion by using the sub-sup solution method, Mountain Pass Theorem in order intervals, Leray-Schauder degree theory and the invariance of decreasing flow.  相似文献   

4.
This paper is concerned with a nonlocal hyperbolic system as follows utt = △u + (∫Ωvdx )^p for x∈R^N,t〉0 ,utt = △u + (∫Ωvdx )^q for x∈R^N,t〉0 ,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N, where 1≤ N ≤3, p ≥1, q ≥ 1 and pq 〉 1. Here the initial values are compactly supported and Ω belong to R^N is a bounded open region. The blow-up curve, blow-up rate and profile of the solution are discussed.  相似文献   

5.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

6.
Abstract  Let Ω be the unit ball centered at the origin in . We study the following problem
By a constructive argument, we prove that for any k = 1, 2, • • •, if ε is small enough, then the above problem has positive a solution uε concentrating at k distinct points which tending to the boundary of Ω as ε goes to 0+.  相似文献   

7.
In this paper, we study the Pohozaev identity associated with a Henon-Lane-Emden system involving the fractional Laplacian:■in a star-shaped and bounded domain Ω for s ∈(0,1). As an application of our identity, we deduce the nonexistence of positive solutions in the critical and supercritical cases.  相似文献   

8.
In this paper, we study the existence of solutions for the following superlinear elliptic equation with nonlinear boundary value condition $$\left\{ {\begin{array}{*{20}{c}} { - \Delta u + u = {{\left| u \right|}^{r - 2}}u}&{in\;\Omega ,\;\;} \\ {\frac{{\partial u}}{{\partial v}} = {{\left| u \right|}^{q - 2}}u}&{on\;\partial \Omega ,} \end{array}} \right.$$ where Ω ⊂ ℝN, N ≥ 3 is a bounded domain with smooth boundary. We will prove the existence results for the above equation under four different cases: (i) Both q and r are subcritical; (ii) r is critical and q is subcritical; (iii) r is subcritical and q is critical; (iv) Both q and r are critical.  相似文献   

9.
Abstract In this paper, we investigate the positive solutions of strongly coupled nonlinear parabolic systems with nonlinear boundary conditions: {ut-a(u, v)△u=g(u, v), vt-b(u, v)△v=h(u, v), δu/δη=d(u, v), δu/δη=f(u, v).Under appropriate hypotheses on the functions a, b, g, h, d and f, we obtain that the solutions may exist globally or blow up in finite time by utilizing upper and lower solution techniques.  相似文献   

10.
We consider the ( p , n m p ) right focal boundary value problem: $${\matrix{{(- 1)^{n - p} u^{(n)} \! = \lambda \;f(t, u), } \hfill & \ {{\rm for }\ 0 \lt t \lt 1, } \hfill \cr \quad \quad \,{u^{(i)} (0) = 0, } \hfill & {0 \le i \le p - 1, } \hfill \cr \quad \quad \,{u^{(i)} (1) = 0, } \hfill & {p \le i \le n - 1, } \hfill \cr}} $$ where 1 h p h n m 1 is fixed and u > 0. Using a fixed point theorem for operators on a cone, we develop criteria for the existence of positive solutions of the boundary value problem for u on a suitable interval.  相似文献   

11.
In this paper, we consider the global existence and the asymptotic behavior of solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects: {ψt=-(1-α)ψ-θx+αψxx, θt=-(1-α)θ+νψx+(ψθ)x+αθxx(E) with initial data (ψ,θ)(x,0)=(ψ0(x),θ0(x))→(ψ±,θ±)as x→±∞ where α and ν are positive constants such that α 〈 1, ν 〈 4α(1 - α). Under the assumption that |ψ+ - ψ-| + |θ+ - θ-| is sufficiently small, we show the global existence of the solutions to Cauchy problem (E) and (I) if the initial data is a small perturbation. And the decay rates of the solutions with exponential rates also are obtained. The analysis is based on the energy method.  相似文献   

12.
Let Ω be a smooth bounded domain of with N ≥ 5. In this paper we prove, for ɛ > 0 small, the nondegeneracy of the solution of the problem
under a nondegeneracy condition on the critical points of the Robin function. Our proof uses different techniques with respect to other known papers on this topic.  相似文献   

13.
In this paper we prove the L -boundedness of solutions of the quasilinear elliptic equation
$ {ll} Au \, = f(x,u,\nabla u) &\quad \rm{in }\, \Omega, \\ \dfrac{\partial u}{ \partial \nu} \, = g(x,u) &\quad \rm{on }\, \partial \Omega, $ \begin{array}{ll} Au \, = f(x,u,\nabla u) &\quad \rm{in }\, \Omega, \\ \dfrac{\partial u}{ \partial \nu} \, = g(x,u) &\quad \rm{on }\, \partial \Omega, \end{array}  相似文献   

14.
In this paper, the sharp estimates of all homogeneous expansions for f are established, where f(z) = (f 1(z), f 2(z), …, f n (z))′ is a k-fold symmetric quasi-convex mapping defined on the unit polydisk in ℂ n and
$ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered} $ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered}   相似文献   

15.
In this paper we study the existence of nontrivial solutions for the following system of coupled semilinear Poisson equations: where is a bounded domain in We assume that and the function f is superlinear and with no growth restriction (for example f(s) = s es); then the system has a nontrivial (strong) solution.  相似文献   

16.
In this paper we consider a class of nonlinear elliptic problems of the type
$ \left\{ \begin{gathered} - div(a(x,\nabla u)) - div(\Phi (x,u)) = fin\Omega \hfill \\ u = 0on\partial \Omega , \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} - div(a(x,\nabla u)) - div(\Phi (x,u)) = fin\Omega \hfill \\ u = 0on\partial \Omega , \hfill \\ \end{gathered} \right.   相似文献   

17.
This paper concerns boundary value problems for quasilinear second order elliptic systems which are, for example, of the type
Here Ω is a Lipschitz domain in νj are the components of the unit outward normal vector field on ∂Ω, the sets Γβ are open in ∂Ω and their relative boundaries are Lipschitz hypersurfaces in ∂Ω. The coefficient functions are supposed to be bounded and measurable with respect to the space variable and smooth with respect to the unknown vector function u and to the control parameter λ. It is shown that, under natural conditions, such boundary value problems generate smooth Fredholm maps between appropriate Sobolev-Campanato spaces, that the weak solutions are H?lder continuous up to the boundary and that the Implicit Function Theorem and the Newton Iteration Procedure are applicable.  相似文献   

18.
Let BR be the ball centered at the origin with radius R in RN ( N ≥2). In this paper we study the existence of solution for the following elliptic systemu -△u+λu=p/(p + q)κ(| x |)) u(p-1)vq1,x ∈BR1,-△u+λu=p/(p + q)κ(| x |)) upv(q-1)1,x ∈BR1,u > 01,v > 01,x ∈ BR1,(u)/(v)=01,(v)/(v)=01,x ∈BRwhereλ > 0 , μ > 0 p ≥ 2, q ≥ 2,ν is the unit outward normal at the boundary BR . Under certainassumptions on κ ( | x | ), using variational methods, we prove the existence of a positive and radially increasing solution for this problem without growth conditions on the nonlinearity.  相似文献   

19.
The aim of this work is to study the existence of solutions of quasilinear elliptic problems of the type
$\left\{{ll}-{\rm div}([a(x) + |u|^q] \nabla u) + b(x)u|u|^{p-1}|\nabla u|^2 = f(x), & {\rm in}\,\Omega;\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \; u = 0, & \,{\rm on}\,\partial\Omega. \right.$\left\{\begin{array}{ll}-{\rm div}([a(x) + |u|^q] \nabla u) + b(x)u|u|^{p-1}|\nabla u|^2 = f(x), & {\rm in}\,\Omega;\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \; u = 0, & \,{\rm on}\,\partial\Omega. \end{array}\right.  相似文献   

20.
The paper is devoted to the study of the behavior of the following mixed problem for large values of time:
where Ω is an unbounded region of ℝ n with, generally speaking, noncompact boundary ; the surface Γ is star-shaped (relative to the origin), ν is the unit outer normal to ∂Ω; and the initial functionsf andg are assumed to be sufficiently smooth and finite. Under certain restrictions on the part of the boundary Γ2 constrained by the impedance condition, we establish that one can match the impedanceg≥0 (characterizing the absorption of energy by the surface Γ2) to the geometric properties of this surface so that the energy on an arbitrary compact set will decay at a rate characteristic for the first mixed problem. Translated fromMatematicheskie Zametki, Vol. 66, No. 3, pp. 393–400, September, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号