首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We construct the time evolution for infinitely many particles in F(x) = { *20c + ¥ 0 *20c |x| < a |x| \geqq a \Phi (x) = \left\{ {\begin{array}{*{20}c} { + \infty } \\ 0 \\ \end{array} } \right. \begin{array}{*{20}c} {|x|< a} \\ {|x| \geqq a} \\ \end{array}  相似文献   

2.
In this paper, we prove a maximum principle for a frequency localized transport-diffusion equation. As an application, we prove the local well-posedness of the supercritical quasi-geostrophic equation in the critical Besov spaces \mathringB1-a¥,q{\mathring{B}^{1-\alpha}_{\infty,q}}, and global well-posedness of the critical quasi-geostrophic equation in \mathringB0¥,q{\mathring{B}^{0}_{\infty,q}} for all 1 ≤ q < ∞. Here \mathringBs¥,q {\mathring{B}^{s}_{\infty,q} } is the closure of the Schwartz functions in the norm of Bs¥,q{B^{s}_{\infty,q}}.  相似文献   

3.
We prove the invariance of the mean 0 white noise for the periodic KdV. First, we show that the Besov-type space [^(b)]sp,¥{\widehat{b}^s_{p,\infty}} , sp < −1, contains the support of the white noise. Then, we prove local well-posedness in [^(b)]sp, ¥{\widehat{b}^s_{p, \infty}} for p = 2 + , s = -\frac12+{s = -\frac{1}{2}+} such that sp < −1. In establishing the local well-posedness, we use a variant of the Bourgain spaces with a weight. This provides an analytical proof of the invariance of the white noise under the flow of KdV obtained in Quastel-Valko [21].  相似文献   

4.
In this paper, we consider the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations with initial data in the critical Besov-Sobolev type spaces B{\mathcal{B}} and B-\frac12,\frac124{\mathcal{B}^{-\frac12,\frac12}_4} (see Definitions 1.1 and 1.2 below). In particular, we proved that there exists a positive constant C such that (ANS ν ) has a unique global solution with initial data u0 = (u0h, u03){u_0 = (u_0^h, u_0^3)} which satisfies ||u0h||B exp(\fracCn4 ||u03||B4) £ c0n{\|u_0^h\|_{\mathcal{B}} \exp\bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}}^4\bigr) \leq c_0\nu} or ||u0h||B-\frac12,\frac124 exp(\fracCn4 ||u03||B-\frac12,\frac1244) £ c0n{\|u_0^h\|_{\mathcal{B}^{-\frac12,\frac12}_{4}} \exp \bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}^{-\frac12,\frac12}_{4}}^4\bigr)\leq c_0\nu} for some c 0 sufficiently small. To overcome the difficulty that Gronwall’s inequality can not be applied in the framework of Chemin-Lerner type spaces, [(Lpt)\tilde](B){\widetilde{L^p_t}(\mathcal{B})}, we introduced here sort of weighted Chemin-Lerner type spaces, [(L2t, f)\tilde](B){\widetilde{L^2_{t, f}}(\mathcal{B})} for some apropriate L 1 function f(t).  相似文献   

5.
For a q × q matrix x = (x i, j ) we let ${J(x)=(x_{i,j}^{-1})}For a q × q matrix x = (x i, j ) we let J(x)=(xi,j-1){J(x)=(x_{i,j}^{-1})} be the Hadamard inverse, which takes the reciprocal of the elements of x. We let I(x)=(xi,j)-1{I(x)=(x_{i,j})^{-1}} denote the matrix inverse, and we define K=I°J{K=I\circ J} to be the birational map obtained from the composition of these two involutions. We consider the iterates Kn=K°?°K{K^n=K\circ\cdots\circ K} and determine the degree complexity of K, which is the exponential rate of degree growth d(K)=limn?¥( deg(Kn) )1/n{\delta(K)=\lim_{n\to\infty}\left( deg(K^n) \right)^{1/n}} of the degrees of the iterates. Earlier studies of this map were restricted to cyclic matrices, in which case K may be represented by a simpler map. Here we show that for general matrices the value of δ(K) is equal to the value conjectured by Anglès d’Auriac, Maillard and Viallet.  相似文献   

6.
We study the large time asymptotic behavior of solutions to the generalized Kadomtsev-Petviashvili (KP) equations $ \left\{\alignedat2 &u_t + u_{xxx} + \sigma\partial_x^{-1}u_{yy}= - (u^{\rho})_x, &;&;\qquad (t,x,y) \in {\bold R}\times {\bold R}^2,\\ \vspace{.5\jot} &u(0,x,y) = u_0 (x,y),&;&; \qquad (x,y) \in{\bold R}^2, \endalignedat \right. \TAG KP $ \left\{\alignedat2 &u_t + u_{xxx} + \sigma\partial_x^{-1}u_{yy}= - (u^{\rho})_x, &;&;\qquad (t,x,y) \in {\bold R}\times {\bold R}^2,\\ \vspace{.5\jot} &u(0,x,y) = u_0 (x,y),&;&; \qquad (x,y) \in{\bold R}^2, \endalignedat \right. \TAG KP where † = 1 or † = m 1. When „ = 2 and † = m 1, (KP) is known as the KPI equation, while „ = 2, † = + 1 corresponds to the KPII equation. The KP equation models the propagation along the x-axis of nonlinear dispersive long waves on the surface of a fluid, when the variation along the y-axis proceeds slowly [10]. The case „ = 3, † = m 1 has been found in the modeling of sound waves in antiferromagnetics [15]. We prove that if „ S 3 is an integer and the initial data are sufficiently small, then the solution u of (KP) satisfies the following estimates: ||u(t)||C (1 + |t|)-1 (log(2+|t|))k, ||ux(t)||C (1 + |t|)-1 \|u(t)\|_\infty \le C (1 + |t|)^{-1} (\log (2+|t|))^{\kappa}, \|u_x(t)\|_\infty \le C (1 + |t|)^{-1} for all t ] R, where s = 1 if „ = 3 and s = 0 if „ S 4. We also find the large time asymptotics for the solution.  相似文献   

7.
Inspired by the works of Rodnianski and Schlein [31] and Wu [34,35], we derive a new nonlinear Schrödinger equation that describes a second-order correction to the usual tensor product (mean-field) approximation for the Hamiltonian evolution of a many-particle system in Bose-Einstein condensation. We show that our new equation, if it has solutions with appropriate smoothness and decay properties, implies a new Fock space estimate. We also show that for an interaction potential ${v(x)= \epsilon \chi(x) |x|^{-1}}Inspired by the works of Rodnianski and Schlein [31] and Wu [34,35], we derive a new nonlinear Schr?dinger equation that describes a second-order correction to the usual tensor product (mean-field) approximation for the Hamiltonian evolution of a many-particle system in Bose-Einstein condensation. We show that our new equation, if it has solutions with appropriate smoothness and decay properties, implies a new Fock space estimate. We also show that for an interaction potential v(x) = ec(x) |x|-1{v(x)= \epsilon \chi(x) |x|^{-1}}, where e{\epsilon} is sufficiently small and c ? C0{\chi \in C_0^{\infty}} even, our program can be easily implemented locally in time. We leave global in time issues, more singular potentials and sophisticated estimates for a subsequent part (Part II) of this paper.  相似文献   

8.
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality
tr( (-D)2 - CHRd,2\frac1|x|4 - V(x) )-gCgò\mathbbRd V(x)+g+ \fracd4 dx,     g 3 1 - \frac d 4,\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,  相似文献   

9.
The existence of co-rotational finite time blow up solutions to the wave map problem from ${\mathbb{R}^{2+1} \to N}The existence of co-rotational finite time blow up solutions to the wave map problem from \mathbbR2+1 ? N{\mathbb{R}^{2+1} \to N} , where N is a surface of revolution with metric d ρ 2 + g(ρ)2 dθ2, g an entire function, is proven. These are of the form u(t,r)=Q(l(t)t)+R(t,r){u(t,r)=Q(\lambda(t)t)+\mathcal{R}(t,r)} , where Q is a time independent solution of the co-rotational wave map equation −u tt  + u rr  + r −1 u r  = r −2 g(u)g′(u), λ(t) = t −1-ν, ν > 1/2 is arbitrary, and R{\mathcal{R}} is a term whose local energy goes to zero as t → 0.  相似文献   

10.
We analyze the long time behavior of solutions of the Schrödinger equation ${i\psi_t=(-\Delta-b/r+V(t,x))\psi}We analyze the long time behavior of solutions of the Schr?dinger equation iyt=(-D-b/r+V(t,x))y{i\psi_t=(-\Delta-b/r+V(t,x))\psi}, x ? \mathbbR3{x\in\mathbb{R}^3}, r =  |x|, describing a Coulomb system subjected to a spatially compactly supported time periodic potential V(t, x) =  V(t +  2π/ω, x) with zero time average.  相似文献   

11.
We consider the Edwards-Anderson Ising spin glass model on the half-plane \mathbbZ ×\mathbbZ+{\mathbb{Z} \times \mathbb{Z}^+} with zero external field and a wide range of choices, including mean zero Gaussian for the common distribution of the collection J of i.i.d. nearest neighbor couplings. The infinite-volume joint distribution K(J,a){\mathcal{K}(J,\alpha)} of couplings J and ground state pairs α with periodic (respectively, free) boundary conditions in the horizontal (respectively, vertical) coordinate is shown to exist without need for subsequence limits. Our main result is that for almost every J, the conditional distribution K(a | J){\mathcal{K}(\alpha\,|\,J)} is supported on a single ground state pair.  相似文献   

12.
For weakly non ergodic systems, the probability density function of a time average observable is where is the value of the observable when the system is in state j=1,…L. p j eq is the probability that a member of an ensemble of systems occupies state j in equilibrium. For a particle undergoing a fractional diffusion process in a binding force field, with thermal detailed balance conditions, p j eq is Boltzmann’s canonical probability. Within the unbiased sub-diffusive continuous time random walk model, the exponent 0<α<1 is the anomalous diffusion exponent 〈x 2〉∼t α found for free boundary conditions. When α→1 ergodic statistical mechanics is recovered . We briefly discuss possible physical applications in single particle experiments.  相似文献   

13.
Measurements of α s, the coupling strength of the Strong Interaction between quarks and gluons, are summarised and an updated value of the world average of as(MZ0)\alpha_{\mathrm{s}}(M_{\mathrm{Z}^{0}}) is derived. Special emphasis is laid on the most recent determinations of α s. These are obtained from τ-decays, from global fits of electroweak precision data and from measurements of the proton structure function F2, which are based on perturbative QCD calculations up to O(as4)\mathcal{O}(\alpha_{\mathrm{s}}^{4}); from hadronic event shapes and jet production in e+e annihilation, based on O(as3)\mathcal{O}(\alpha_{\mathrm{s}}^{3}) QCD; from jet production in deep inelastic scattering and from ϒ decays, based on O(as2)\mathcal{O}(\alpha_{\mathrm{s}}^{2}) QCD; and from heavy quarkonia based on unquenched QCD lattice calculations. A pragmatic method is chosen to obtain the world average and an estimate of its overall uncertainty, resulting in
as(MZ0)=0.1184±0.0007.\alpha_\mathrm{s}(M_{\mathrm{Z}^0})=0.1184\pm 0.0007.  相似文献   

14.
We consider Lie(G)-valued G-invariant connections on bundles over spaces ${G/H,\, \mathbb{R}\times G/H\, {\rm and}\, \mathbb{R}^2\times G/H}We give a geometric construction of the ${\mathcal{W}_{1+\infty}}We consider Lie(G)-valued G-invariant connections on bundles over spaces G/H, \mathbbR×G/H and \mathbbR2×G/H{G/H,\, \mathbb{R}\times G/H\, {\rm and}\, \mathbb{R}^2\times G/H}, where G/H is a compact nearly K?hler six-dimensional homogeneous space, and the manifolds \mathbbR×G/H{\mathbb{R}\times G/H} and \mathbbR2×G/H{\mathbb{R}^2\times G/H} carry G 2- and Spin(7)-structures, respectively. By making a G-invariant ansatz, Yang-Mills theory with torsion on \mathbbR×G/H{\mathbb{R}\times G/H} is reduced to Newtonian mechanics of a particle moving in a plane with a quartic potential. For particular values of the torsion, we find explicit particle trajectories, which obey first-order gradient or hamiltonian flow equations. In two cases, these solutions correspond to anti-self-dual instantons associated with one of two G 2-structures on \mathbbR×G/H{\mathbb{R}\times G/H}. It is shown that both G 2-instanton equations can be obtained from a single Spin(7)-instanton equation on \mathbbR2×G/H{\mathbb{R}^2\times G/H}.  相似文献   

15.
In this article, we assume that there exist scalar D*[`(D)]*{D}^{\ast}{\bar {D}}^{\ast}, Ds*[`(D)]s*{D}_{s}^{\ast}{\bar{D}}_{s}^{\ast}, B*[`(B)]*{B}^{\ast}{\bar {B}}^{\ast} and Bs*[`(B)]s*{B}_{s}^{\ast}{\bar{B}}_{s}^{\ast} molecular states, and study their masses using the QCD sum rules. The numerical results indicate that the masses are about (250–500) MeV above the corresponding D *–[`(D)]*{\bar{D}}^{\ast}, D s *–[`(D)]s*{\bar {D}}_{s}^{\ast}, B *–[`(B)]*{\bar{B}}^{\ast} and B s *–[`(B)]s*{\bar {B}}_{s}^{\ast} thresholds, the Y(4140) is unlikely a scalar Ds*[`(D)]s*{D}_{s}^{\ast}{\bar{D}}_{s}^{\ast} molecular state. The scalar D*[`(D)]*D^{\ast}{\bar{D}}^{\ast}, Ds*[`(D)]s*D_{s}^{\ast}{\bar{D}}_{s}^{\ast}, B*[`(B)]*B^{\ast}{\bar{B}}^{\ast} and Bs*[`(B)]s*B_{s}^{\ast}{\bar{B}}_{s}^{\ast} molecular states maybe not exist, while the scalar D*[`(D)]¢*{D'}^{\ast}{\bar{D}}^{\prime\ast}, Ds¢*[`(D)]s¢*{D}_{s}^{\prime\ast}{\bar{D}}_{s}^{\prime\ast}, B¢*[`(B)]¢*{B}^{\prime\ast}{\bar{B}}^{\prime\ast} and Bs¢*[`(B)]s¢*{B}_{s}^{\prime\ast}{\bar{B}}_{s}^{\prime\ast} molecular states maybe exist.  相似文献   

16.
We introduce a notion of a strongly ${\mathbb{C}^{\times}}We introduce a notion of a strongly \mathbbC×{\mathbb{C}^{\times}}-graded, or equivalently, \mathbbC/\mathbbZ{\mathbb{C}/\mathbb{Z}}-graded generalized g-twisted V-module associated to an automorphism g, not necessarily of finite order, of a vertex operator algebra. We also introduce a notion of a strongly \mathbbC{\mathbb{C}}-graded generalized g-twisted V-module if V admits an additional \mathbbC{\mathbb{C}}-grading compatible with g. Let V=\coprodn ? \mathbbZV(n){V=\coprod_{n\in \mathbb{Z}}V_{(n)}} be a vertex operator algebra such that V(0)=\mathbbC1{V_{(0)}=\mathbb{C}\mathbf{1}} and V (n) = 0 for n < 0 and let u be an element of V of weight 1 such that L(1)u = 0. Then the exponential of 2p?{-1}  Resx Y(u, x){2\pi \sqrt{-1}\; {\rm Res}_{x} Y(u, x)} is an automorphism g u of V. In this case, a strongly \mathbbC{\mathbb{C}}-graded generalized g u -twisted V-module is constructed from a strongly \mathbbC{\mathbb{C}}-graded generalized V-module with a compatible action of g u by modifying the vertex operator map for the generalized V-module using the exponential of the negative-power part of the vertex operator Y(u, x). In particular, we give examples of such generalized twisted modules associated to the exponentials of some screening operators on certain vertex operator algebras related to the triplet W-algebras. An important feature is that we have to work with generalized (twisted) V-modules which are doubly graded by the group \mathbbC/\mathbbZ{\mathbb{C}/\mathbb{Z}} or \mathbbC{\mathbb{C}} and by generalized eigenspaces (not just eigenspaces) for L(0), and the twisted vertex operators in general involve the logarithm of the formal variable.  相似文献   

17.
The complex impedance of the Ag2ZnP2O7 compound has been investigated in the temperature range 419–557 K and in the frequency range 200 Hz–5 MHz. The Z′ and Z′ versus frequency plots are well fitted to an equivalent circuit model. Dielectric data were analyzed using complex electrical modulus M* for the sample at various temperatures. The modulus plot can be characterized by full width at half-height or in terms of a non-exponential decay function f( \textt ) = exp( - \textt/t )b \phi \left( {\text{t}} \right) = \exp {\left( { - {\text{t}}/\tau } \right)^\beta } . The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law: s( w) = s\textdc + \textAwn \sigma \left( \omega \right) = {\sigma_{\text{dc}}} + {\text{A}}{\omega^n} . The conductivity σ dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of M″, conductivity data, and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of the Ag+ ions in the structure of the investigated material.  相似文献   

18.
We extend to the sl(N)sl(N) case the results that we previously obtained on the construction of Wq,p{\cal W}_{q,p} algebras from the elliptic algebra Aq,p([^(sl)](2)c){\cal A}_{q,p}(\widehat{sl}(2)_{c}). The elliptic algebra \elp\elp at the critical level c= m N has an extended center containing trace-like operators t(z). Families of Poisson structures indexed by N(Nу)/2 integers, defining q-deformations of the WN{\cal W}_{N} algebra, are constructed. The operators t(z) also close an exchange algebra when (-p\sfrac12)NM = q-c-N(-p^\sfrac{1}{2})^{NM} = q^{-c-N} for M ? \ZZM\in\ZZ. It becomes Abelian when in addition p= qNh, where h is a non-zero integer. The Poisson structures obtained in these classical limits contain different q-deformed WN{\cal W}_{N} algebras depending on the parity of h, characterizing the exchange structures at p p qNh as new Wq,p(sl(N)){\cal W}_{q,p}(sl(N)) algebras.  相似文献   

19.
We characterize averages of ?l=1N|x - tl|a- 1{\prod_{l=1}^N|x - t_l|^{\alpha - 1}} with respect to the Selberg density, further constrained so that tl ? [0,x] (l=1,...,q){t_l \in [0,x] (l=1,\dots,q)} and tl ? [x,1] (l=q+1,...,N){t_l \in [x,1] (l=q+1,\dots,N)} , in terms of a basis of solutions of a particular Fuchsian matrix differential equation. By making use of the Dotsenko-Fateev integrals, the explicit form of the connection matrix from the Frobenius type power series basis to this basis is calculated, thus allowing us to explicitly compute coefficients in the power series expansion of the averages. From these we are able to compute power series for the marginal distributions of the tj (j=1,...,N){t_j (j=1,\dots,N)} . In the case q = 0 and α < 1 we compute the explicit leading order term in the x ? 0{x \to 0} asymptotic expansion, which is of interest to the study of an effect known as singularity dominated strong fluctuations. In the case q = 0 and a ? \mathbbZ+{\alpha \in \mathbb{Z}^+} , and with the absolute values removed, the average is a polynomial, and we demonstrate that its zeros are highly structured.  相似文献   

20.
Let an external current, whose support is confined to the space-like slab |x 0| < T in two-dimensional spacetime, build up a localized charge density which vanishes for times |x 0| > T. We show that the zero mass Dirac quantum field reacts to this current by a c-number shift of the fermion number, i.e. Q out=Q in+Q, with , where q(x 0) denotes the total external charge. For the shift of the axial charge we obtain an extension of existing results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号