首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Weakly Non-Ergodic Statistical Physics
Authors:A Rebenshtok  E Barkai
Institution:(1) Department of Physics, Bar Ilan University, Ramat-Gan, 52900, Israel
Abstract:For weakly non ergodic systems, the probability density function of a time average observable $\overline{{\mathcal{O}}}$ is $f_{\alpha}(\overline{{\mathcal{O}}})=-{1\over \pi}\lim_{\epsilon\to 0}\mbox{Im}{\sum_{j=1}^{L}p^{\mathrm{eq}}_{j}(\overline{{\mathcal{O}}}-{\mathcal{O}}_{j}+i\epsilon)^{\alpha -1}\over \sum_{j=1}^{L}p^{\mathrm{eq}}_{j}(\overline{{\mathcal{O}}}-{\mathcal{O}}_{j}+i\epsilon)^{\alpha}}$ where ${\mathcal{O}}_{j}$ is the value of the observable when the system is in state j=1,…L. p j eq is the probability that a member of an ensemble of systems occupies state j in equilibrium. For a particle undergoing a fractional diffusion process in a binding force field, with thermal detailed balance conditions, p j eq is Boltzmann’s canonical probability. Within the unbiased sub-diffusive continuous time random walk model, the exponent 0<α<1 is the anomalous diffusion exponent 〈x 2〉∼t α found for free boundary conditions. When α→1 ergodic statistical mechanics is recovered $\lim_{\alpha \to 1}f_{\alpha}(\overline{{\mathcal{O}}})=\delta (\overline{{\mathcal{O}}}-\langle {\mathcal{O}}\rangle )$ . We briefly discuss possible physical applications in single particle experiments.
Keywords:Weak ergodicity breaking  Continuous time random walk  Fractional Fokker–  Planck equation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号