首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
2.
Deformable components in multibody systems are subject to kinematic constraints that represent mechanical joints and specified motion trajectories. These constraints can, in general, be described using a set of nonlinear algebraic equations that depend on the system generalized coordinates and time. When the kinematic constraints are augmented to the differential equations of motion of the system, it is desirable to have a formulation that leads to a minimum number of non-zero coefficients for the unknown accelerations and constraint forces in order to be able to exploit efficient sparse matrix algorithms. This paper describes procedures for the computer implementation of the absolute nodal coordinate formulation' for flexible multibody applications. In the absolute nodal coordinate formulation, no infinitesimal or finite rotations are used as nodal coordinates. The configuration of the finite element is defined using global displacement coordinates and slopes. By using this mixed set of coordinates, beam and plate elements can be treated as isoparametric elements. As a consequence, the dynamic formulation of these widely used elements using the absolute nodal coordinate formulation leads to a constant mass matrix. It is the objective of this study to develop computational procedures that exploit this feature. In one of these procedures, an optimum sparse matrix structure is obtained for the deformable bodies using the QR decomposition. Using the fact that the element mass matrix is constant, a QR decomposition of a modified constant connectivity Jacobian matrix is obtained for the deformable body. A constant velocity transformation is used to obtain an identity generalized inertia matrix associated with the second derivatives of the generalized coordinates, thereby minimizing the number of non-zero entries of the coefficient matrix that appears in the augmented Lagrangian formulation of the equations of motion of the flexible multibody systems. An alternate computational procedure based on Cholesky decomposition is also presented in this paper. This alternate procedure, which has the same computational advantages as the one based on the QR decomposition, leads to a square velocity transformation matrix. The computational procedures proposed in this investigation can be used for the treatment of large deformation problems in flexible multibody systems. They have also the advantages of the algorithms based on the floating frame of reference formulations since they allow for easy addition of general nonlinear constraint and force functions.  相似文献   

3.
The dynamic equations of multibody railroad vehicle systems can be formulated using different sets of generalized coordinates; examples of these sets of coordinates are the absolute Cartesian and trajectory coordinates. The absolute coordinate based formulations do not require introducing an intermediate track coordinate system since all the absolute coordinates are defined in the global system. On the other hand, when the trajectory coordinates are used, a track coordinate system that follows the motion of a body in the railroad vehicle system is introduced. This track coordinate system is defined by the track geometry and the distance traveled by the body along the track centerline. The configuration of the body with respect to the track coordinate system is defined using five coordinates; two translations and three Euler angles. In this paper, the formulations based on the absolute and trajectory coordinates are compared. It is shown that these two sets of coordinates require different degrees of differentiability and smoothness. When an elastic contact formulation is used to study the wheel/rail dynamic interaction, there are significant differences in the order of the derivatives required in both formulations. In fact, as demonstrated in this study, in the absence of a contact constraint formulation, higher order derivatives with respect to geometric parameters are still required when the equations are formulated using the trajectory coordinates. The formulation of the constraints used in the analysis of the wheel/rail contact is discussed and it is shown that when the absolute coordinates are used, only third order derivatives need to be evaluated. The relationship between the track frame used in railroad vehicle dynamics and the Frenet frame used in the theory of curves to describe the curve geometry is also discussed in this paper. Based on the analysis presented in this paper, the advantages and drawbacks of a hybrid method which employs both the absolute and trajectory coordinates and planar contact conditions in order to reduce the number of contact constraints and relax the differentiability requirements are discussed. In this method, the absolute coordinates are used to formulate the equations of motion of the railroad vehicle system. The absolute coordinate solution can be used to determine the trajectory coordinates and their time derivatives. Using the trajectory coordinates, the motion of the body in the vehicle with respect to the track coordinate system can be predicted and used in the formulation of the planar contact model.  相似文献   

4.
5.
6.
The dynamics of classical robotic systems are usually described by ordinary differential equations via selecting a minimum set of independent generalized coordinates. However, different parameterizations and the use of a nonminimum set of (dependent) generalized coordinates can be advantageous in such cases when the modeled device contains closed kinematic loops and/or it has a complex structure. On one hand, the use of dependent coordinates, like natural coordinates, leads to a different mathematical representation where the equations of motion are given in the form of differential algebraic equations. On the other hand, the control design of underactuated robots usually relies on partial feedback linearization based techniques which are exclusively developed for systems modeled by independent coordinates. In this paper, we propose a different control algorithm formulated by using dependent coordinates. The applied computed torque controller is realized via introducing actuator constraints that complement the kinematic constraints which are used to describe the dynamics of the investigated service robotic system in relatively simple and compact form. The proposed controller is applied to the computed torque control of the planar model of the ACROBOTER service robot. The stability analysis of the digitally controlled underactuated service robot is provided as a real parameter case study for selecting the optimal control gains.  相似文献   

7.
The solution of the constrained multibody system equations of motion using the generalized coordinate partitioning method requires the identification of the dependent and independent coordinates. Using this approach, only the independent accelerations are integrated forward in time in order to determine the independent coordinates and velocities. Dependent coordinates are determined by solving the nonlinear constraint equations at the position level. If the constraint equations are highly nonlinear, numerical difficulties can be encountered or more Newton–Raphson iterations may be required in order to achieve convergence for the dependent variables. In this paper, a velocity transformation method is proposed for railroad vehicle systems in order to deal with the nonlinearity of the constraint equations when the vehicles negotiate curved tracks. In this formulation, two different sets of coordinates are simultaneously used. The first set is the absolute Cartesian coordinates which are widely used in general multibody system computer formulations. These coordinates lead to a simple form of the equations of motion which has a sparse matrix structure. The second set is the trajectory coordinates which are widely used in specialized railroad vehicle system formulations. The trajectory coordinates can be used to obtain simple formulations of the specified motion trajectory constraint equations in the case of railroad vehicle systems. While the equations of motion are formulated in terms of the absolute Cartesian coordinates, the trajectory accelerations are the ones which are integrated forward in time. The problems associated with the higher degree of differentiability required when the trajectory coordinates are used are discussed. Numerical examples are presented in order to examine the performance of the hybrid coordinate formulation proposed in this paper in the analysis of multibody railroad vehicle systems.  相似文献   

8.
A method is presented for formulating and numerically integrating index 0 differential-algebraic equations of motion for multibody systems with holonomic and nonholonomic constraints. Tangent space coordinates are defined in configuration and velocity spaces as independent generalized coordinates that serve as state variables in the formulation. Orthogonal dependent coordinates and velocities are used to enforce position, velocity, and acceleration constraints to within specified error tolerances. Explicit and implicit numerical integration algorithms are presented and used in solution of three examples: one planar and two spatial. Numerical results verify that accurate results are obtained, satisfying all three forms of kinematic constraint to within error tolerances embedded in the formulation.  相似文献   

9.
Yakoub  R. Y.  Shabana  A. A. 《Nonlinear dynamics》1999,20(3):267-282
In a previous publication, procedures that can be used with the absolute nodal coordinate formulation to solve the dynamic problems of flexible multibody systems were proposed. One of these procedures is based on the Cholesky decomposition. By utilizing the fact that the absolute nodal coordinate formulation leads to a constant mass matrix, a Cholesky decomposition is used to obtain a constant velocity transformation matrix. This velocity transformation is used to express the absolute nodal coordinates in terms of the generalized Cholesky coordinates. The inertia matrix associated with the Cholesky coordinates is the identity matrix, and therefore, an optimum sparse matrix structure can be obtained for the augmented multibody equations of motion. The implementation of a computer procedure based on the absolute nodal coordinate formulation and Cholesky coordinates is discussed in this paper. Numerical examples are presented in order to demonstrate the use of Cholesky coordinates in the simulation of the large deformations in flexible multibody applications.  相似文献   

10.
当采用广义坐标描述系统的运动时,相比质点形式的高斯最小拘束原理,通过广义坐标形式的高斯最小拘束原理来建立动力学优化模型,计算效率更高. 从高斯原理的变分形式出发推导了广义坐标形式的高斯最小拘束原理,并研究了非理想约束、单边约束及刚体碰撞情形下的高斯最小拘束原理的形式. 研究认为:对刚体碰撞情形下,高斯最小拘束原理不能取代碰撞恢复定律,碰撞恢复定律以碰撞后广义速度的约束方程形式起作用.  相似文献   

11.
In order to solve the problem of motion for the system with n degrees of freedom under the action of p impulsive constraints, we must solve the simultaneous equations consisting of n+p equations. In this paper, it has been shown that the undetermined multipliers in the equations of impact can be cancelled for the cases of both the generalized coordinates and the quasi-coordinates. Thus there are only n-p equations of impact. Combining these equations with p impulsive constraint equations, we have simultaneous equations consisting of n equations. Therefore, only n equations are necessary to solve the problem of impact for the system subjected to impulsive constraints. The method proposed in this paper is simpler than ordinary methods.  相似文献   

12.
13.
陈菊  吴惠彬  梅凤翔 《力学学报》2016,48(4):972-975
对于完整力学系统,若选取的参数不是完全独立的,则称为有多余坐标的完整系统. 由于完整力学系统的第二类Lagrange 方程中没有约束力,故为研究完整力学系统的约束力,需采用有多余坐标的带乘子的Lagrange方程或第一类Lagrange 方程. 一些动力学问题要求约束力不能为零,而另一些问题要求约束力很小. 如果约束力为零,则称为系统的自由运动问题. 本文提出并研究了有多余坐标完整系统的自由运动问题. 为研究系统的自由运动,首先,由d'Alembert-Lagrange 原理, 利用Lagrange 乘子法建立有多余坐标完整系统的运动微分方程;其次,由多余坐标完整系统的运动方程和约束方程建立乘子满足的代数方程并得到约束力的表达式;最后,由约束系统自由运动的定义,令所有乘子为零,得到系统实现自由运动的条件. 这些条件的个数等于约束方程的个数,它们依赖于系统的动能、广义力和约束方程,给出其中任意两个条件,均可以得到实现自由运动时对另一个条件的限制. 即当给定动能和约束方程,这些条件会给出实现自由运动时广义力之间的关系. 当给定动能和广义力,这些条件会给出实现自由运动时对约束方程的限制. 当给定广义力和约束方程,这些条件会给出实现自由运动时对动能的限制. 文末,举例并说明方法和结果的应用.   相似文献   

14.
In this communication we present the equations of Euler generalized for the motion of a body in an accelerated reference frame using the generalized work-energy principle. The equivalence among the generalized Euler equation, the generalized Lagrange equation, and the generalized Kane equation are shown when applied to the motion of a body of a holonomic system that depend onn generalized coordinates. Therefore when the generalized coordinates can be reduced to two sets of independent coordinates, the generalized Euler equation can be split into two uncoupled equations that are not independent of each other.Universidade da Beira Interior, Covilhã, Portugal. Published in Prikladnaya Mekhanika, Vol. 31, No. 9, pp. 79–89, September, 1995.  相似文献   

15.
The Lagrange multiplier form of index 3 differential-algebraic equations of motion for holonomically constrained multibody systems is transformed using tangent space generalized coordinates to an index 0 form that is equivalent to an ordinary differential equation. The index 0 formulation includes embedded tolerances that assure satisfaction of position, velocity, and acceleration constraints and is solved using established explicit and implicit numerical integration methods. Numerical experiments with two spatial applications show that the formulation accurately satisfies constraints, preserves invariants due to conservation laws, and behaves as if applied to an ordinary differential equation.  相似文献   

16.
The paper proposes computer algebra system (CAS) algorithms for computer-assisted derivation of the equations of motion for systems of rigid bodies with holonomic and nonholonomic constraints that are linear with respect to the generalized velocities. The main advantages of using the D’Alembert-Lagrange principle for the CSA-based derivation of the equations of motion for nonholonomic systems of rigid bodies are demonstrated. Among them are universality, algorithmizability, computational efficiency, and simplicity of deriving equations for holonomic and nonholonomic systems in terms of generalized coordinates or pseudo-velocities __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 9, pp. 106–115, September 2006.  相似文献   

17.
In the past, perfectly matched layer (PML) equations have been constructed in Cartesian and spherical coordinates. In this article, the focus is on the development of a PML absorbing technique for treating numerical boundaries, especially those with unbounded domains, in a generalized coordinate system for a flow in an arbitrary direction. The PML equations for two-dimensional Euler equations are developed in split form through a space–time transformation involving a complex variable transformation with the application of a pseudo-mean-flow in the PML domain. A numerical solver is developed using conventional numerical schemes without employing any form of filtering or artificial dissipation to solve the governing PML equations for two-dimensional Euler equations in a generalized coordinate system. Physical domains of arbitrary shapes are considered and numerical simulations are carried out to validate and demonstrate the effectiveness of the PML as an absorbing boundary condition in generalized coordinates.  相似文献   

18.
Under certain conditions, an indeterminate solution exists to the equations of motion for dynamic elastic–plastic deformation of materials using constitutive laws based on non-associated flow that suggests that an initially unbounded dynamic perturbation in the stress can develop from a quiescent state on the yield surface. The existence of this indeterminate solution has been alleged to discourage use of non-associated flow rules for both dynamic and quasi-static analysis theoretically. It is shown in this paper that the indeterminate solution that may solve the equations of motion is intrinsically dynamic, and it determinately goes to zero in the quasi-static limit regardless of other indeterminate parameters. Consequently, the existence of this unstable dynamic solution has no impact on stability and use of non-associated flow rules for analysis of the quasi-static problem. More importantly, for dynamic applications, it is also shown that the indeterminate solution solves the equations of motion only if critical restrictions are applied to the constitutive equations such that the effective modulus during loading is constant and the direction of the perturbation is unidirectional over a finite time interval. It is shown that common components of the constitutive laws used in metal forming and deformation analysis are inconsistent with these restrictions. So, these common models can be generalized to include non-associated flow for analysis of the dynamic problem without concern that the solution will become indeterminate.  相似文献   

19.
A wide variety of mechanical and structural multibody systems consist ofvery flexible components subject to kinematic constraints. The widelyused floating frame of reference formulation that employs linear modelsto describe the local deformation leads to a highly nonlinear expressionfor the inertia forces and can be applied to only small deformationproblems. This paper is concerned with the formulation and computerimplementation of spatial joint constraints and forces using the largedeformation absolute nodal coordinate formulation. Unlike the floatingframe of reference formulation that employs a mixed set of absolutereference and local elastic coordinates, in the absolute nodalcoordinate formulation, global displacement and slope coordinates areused. The nonlinear kinematic constraint equations and generalized forceexpressions are expressed in terms of the absolute global displacementsand slopes. In particular, a new formulation for the sliding jointbetween two very flexible bodies is developed. A surface parameter isintroduced as an additional new variable in order to facilitate theformulation of this sliding joint. The constraint and force expressionsdeveloped in this paper are also expressed in terms of generalizedCholesky coordinates that lead to an identity inertia matrix. Severalexamples are presented in order to demonstrate the use of theformulations developed in the paper.  相似文献   

20.
The basis for any model-based control of dynamical systems is a numerically efficient formulation of the motion equations, preferably expressed in terms of a minimal set of independent coordinates. To this end the coordinates of a constrained system are commonly split into a set of dependent and independent ones. The drawback of such coordinate partitioning is that the splitting is not globally valid since an atlas of local charts is required to globally parameterize the configuration space. Therefore different formulations in redundant coordinates have been proposed. They usually involve the inverse of the mass matrix and are computationally rather complex. In this paper an efficient formulation of the motion equations in redundant coordinates is presented for general non-holonomic systems that is valid in any regular configuration. This gives rise to a globally valid system of redundant differential equations. It is tailored for solving the inverse dynamics problem, and an explicit inverse dynamics solution is presented for general full-actuated systems. Moreover, the proposed formulation gives rise to a non-redundant system of motion equations for non-redundantly full-actuated systems that do not exhibit input singularities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号