首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A lattice Boltzmann method is developed to simulate three-dimensional solid particle motions in fluids. In the present model, a uniform grid is used and the exact spatial location of the physical boundary of the suspended particles is determined using an interpolation scheme. The numerical accuracy and efficiency of the proposed lattice Boltzmann method is demonstrated by simulating the sedimentation of a single sphere in a square cylinder. Highly accurate simulation results can be achieved with few meshes, compared with the previous lattice Boltzmann methods. The present method is expected to find applications on the flow systems with moving boundaries, such as the blood flow in distensible vessels, the particle-flow interaction and the solidification of alloys.  相似文献   

2.
The three-dimensional (3D) lattice Boltzmann models, 3DQ15, 3DQ19 and 3DQ27, under different wall boundary conditions and lattice resolutions have been investigated by simulating Poiseuille flow in a circular cylinder for a wide range of Reynolds numbers. The 3DQ19 model with improved Fillippova and Hanel (FH) curved boundary condition represents a good compromise between computational efficiency and reliability. Blood flow in an aortic arch is then simulated as a typical haemodynamic application. Axial and secondary fluid velocity and effective wall shear stress profiles in a 180° bend are obtained, and the results also demonstrate that the lattice Boltzmann method is suitable for simulating the flow in 3D large-curved vessels.  相似文献   

3.
A lattice Boltzmann flux solver (LBFS) is presented in this work for simulation of incompressible viscous and inviscid flows. The new solver is based on Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S) equations and lattice Boltzmann equation (LBE). The macroscopic differential equations are discretized by the finite volume method, where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing and time interval, limitation to viscous flows. LBFS is validated by its application to simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numerical results compare very well with available data in the literature, which show that LBFS has the second order of accuracy in space, and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.  相似文献   

4.
A boundary condition-implemented immersed boundary-lattice Boltzmann method (IB-LBM) is presented in this work. The present approach is an improvement to the conventional IB-LBM. In the conventional IB-LBM, the no-slip boundary condition is only approximately satisfied. As a result, there is flow penetration to the solid boundary. Another drawback of conventional IB-LBM is the use of Dirac delta function interpolation, which only has the first order of accuracy. In this work, the no-slip boundary condition is directly implemented, and used to correct the velocity at two adjacent mesh points from both sides of the boundary point. The velocity correction is made through the second-order polynomial interpolation rather than the first-order delta function interpolation. Obviously, the two drawbacks of conventional IB-LBM are removed in the present study. Another important contribution of this paper is to present a simple way to compute the hydrodynamic forces on the boundary from Newton's second law. To validate the proposed method, the two-dimensional vortex decaying problem and incompressible flow over a circular cylinder are simulated. As shown in the present results, the flow penetration problem is eliminated, and the obtained results compare very well with available data in the literature.  相似文献   

5.
任意复杂流-固边界的格子Boltzmann处理方法   总被引:2,自引:0,他引:2       下载免费PDF全文
史冬岩  王志凯  张阿漫 《物理学报》2014,63(7):74703-074703
本文提出了一种适用于流固耦合领域中任意复杂边界条件的lattice Boltzmann处理方法.该方法基于half-way反弹模型,在流固耦合处构建了一层虚拟边界,并结合有限差分的方法,获取虚拟边界上的变量值.改进后的方法确保了粒子反弹位置与宏观速度采集点的位置相同,计入了实际物理边界与网格线不重合时,偏移量对计算结果的准确影响,而且其适用范围被扩展到了任意静止或运动、平直或弯曲的复杂边界.文中研究了该方法在Poiseuille流、圆柱绕流和Couette流等经典条件下的边界处理能力,结果表明该方法与理论值符合良好,且当实际物理边界与网格线不重合时,与已发表文献中的结果相比,具有更高的精度.  相似文献   

6.
7.

Cross-flows around two, three and four circular cylinders in tandem, side-by-side, isosceles triangle and square arrangements are simulated using the incompressible lattice Boltzmann method with a second-order accurate curved boundary condition at Reynolds number 200 and the cylinder center-to-center transverse or/and longitudinal spacing 1.5D, where D is the identical circular cylinder diameter. The wake patterns, pressure and force distributions on the cylinders and mechanism of flow dynamics are investigated and compared among the four cases. The results also show that flows around the three or four cylinders significantly differ from those of the two cylinders in the tandem and side-by-side arrangements although there are some common features among the four cases due to their similarity of structures, which are interesting, complex and useful for practical applications. This study provides a useful database to validate the simplicity, accuracy and robustness of the Lattice Boltzmann method.

  相似文献   

8.
顾娟  黄荣宗  刘振宇  吴慧英 《物理学报》2017,66(11):114701-114701
针对滑移区复杂气-固边界存在速度滑移现象,提出了一种基于格子Boltzmann方法的非平衡态外推与有限差分相结合的曲边界处理新格式.该格式具有可考虑实际物理边界与网格线偏移量的优势,较传统half-way DBB(diffusive bounce-back)格式更能准确反映实际边界情况,同时还可获取壁面处气体宏观量及其法向梯度等信息.采用本文所提曲边界处理格式模拟分析了滑移区气体平直/倾斜微通道Poiseuille流、微圆柱绕流和同心微圆柱面旋转Couette流问题.研究结果表明,采用曲边界处理新格式所得结果与理论值以及文献结果符合良好,适用于滑移区气体流动的复杂边界处理,且比half-way DBB格式具有更高的精度,较修正DBB格式具有更好的适应性.  相似文献   

9.
张巧玲  景何仿 《计算物理》2022,39(4):427-439
采用多松弛时间格子玻尔兹曼方法(MRT-LBM)的D3Q15模型分别对长方体腔、圆柱腔、半圆柱腔、旋转双曲面腔、旋转椭球面腔、半球腔以及两种组合腔体的三维顶盖驱动腔流进行数值模拟, 比较分析各腔体内流线分布、流速等值线分布和涡心的发展, 对于典型腔体模拟不同雷诺数下的流动情况。结果表明: 在同一雷诺数下, 曲面边界不仅能消除从边界产生的次涡, 还会导致腔内主涡的分离, 增大中心纵剖面纵向回流速度; “上长方体+下半圆柱”腔内流函数分布与边界贴合度最高。当雷诺数不断增大时, 半圆柱腔内主涡逐渐分离成两个同向涡, “上圆柱+下半球”腔内始终保持着圆柱腔与半球腔内的基本流动特征; 而长方体腔内主涡涡心保持在同一高度, 次涡逐渐增强, “上长方体+下半圆柱”腔内流动愈加规则, 主涡逐渐下沉, 流速等值线分布逐渐趋于中心小、四周大。  相似文献   

10.
We introduce a new concept of boundary conditions for realization of the lattice Boltzmann simulations of turbulent flows. The key innovation is the use of a universal distribution function for particles, analogous to the Tamm–Mott-Smith solution for the shock wave in the classical Boltzmann kinetic equation. Turbulent channel flow simulations demonstrate that the new boundary enables accurate results even with severely under-resolved grids. Generalization to complex boundary is illustrated with an example of turbulent flow past a circular cylinder.  相似文献   

11.
A version of immersed boundary-lattice Boltzmann method (IB-LBM) is proposed in this work. It is based on the lattice Boltzmann equation with external forcing term proposed by Guo et al. [Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65 (2002) 046308], which can well consider the effect of external force to the momentum and momentum flux as well as the discrete lattice effect. In this model, the velocity is contributed by two parts. One is from the density distribution function and can be termed as intermediate velocity, and the other is from the external force and can be considered as velocity correction. In the conventional IB-LBM, the force density (external force) is explicitly computed in advance. As a result, we cannot manipulate the velocity correction to enforce the non-slip boundary condition at the boundary point. In the present work, the velocity corrections (force density) at all boundary points are considered as unknowns which are computed in such a way that the non-slip boundary condition at the boundary points is enforced. The solution procedure of present IB-LBM is exactly the same as the conventional IB-LBM except that the non-slip boundary condition can be satisfied in the present model while it is only approximately satisfied in the conventional model. Numerical experiments for the flows around a circular cylinder and an airfoil show that there is no any penetration of streamlines to the solid body in the present results. This is not the case for the results obtained by the conventional IB-LBM. Another advantage of the present method is its simple calculation of force on the boundary. The force can be directly calculated from the relationship between the velocity correction and the force density.  相似文献   

12.
格子Boltzmann方法中的曲边界处理   总被引:4,自引:2,他引:2  
杜睿  施保昌 《计算物理》2006,23(4):405-411
研究了格子Boltzmann方法中实现曲边界条件的3种格式,对它们的精度和稳定性进行了分析和比较.通过二维Poiseuille流和等边三角域上空腔流的模拟,讨论了这3种格式的数值精度和稳定性.  相似文献   

13.
In this paper, we propose a lattice Boltzmann BGK model for simulation of micro flows with heat transfer based on kinetic theory and the thermal lattice Boltzmann method (He et al., J. Comp. Phys. 146:282, 1998). The relaxation times are redefined in terms of the Knudsen number and a diffuse scattering boundary condition (DSBC) is adopted to consider the velocity slip and temperature jump at wall boundaries. To check validity and potential of the present model in modelling the micro flows, two two-dimensional micro flows including thermal Couette flow and thermal developing channel flow are simulated and numerical results obtained compare well with previous studies of the direct simulation Monte Carlo (DSMC), molecular dynamics (MD) approaches and the Maxwell theoretical analysis  相似文献   

14.
The boundary conditions used to represent macroscopic-gradient-related effects in arbitrary geometries with the lattice Boltzmann methods need a trade-off between the complexity of the scheme, due to the loss of localness and the difficulties for directly applying link-based approaches, and the accuracy obtained. A generalization of the momentum transfer boundary condition is presented, in which the arbitrary location of the boundary is addressed with link-wise interpolation (used for Dirichlet conditions) and the macroscopic gradient is taken into account with a finite-difference scheme. This leads to a stable approach for arbitrary geometries that can be used to impose Neumann and Robin boundary conditions. The proposal is validated for stress boundary conditions at walls. Two-dimensional steady and unsteady configurations are used as test case: partial-slip flow between two infinite plates and the slip flow past a circular cylinder.  相似文献   

15.
The objective of this paper is to assess the accuracy and efficiency of the immersed boundary (IB) method to predict the wall pressure fluctuations in turbulent flows, where the flow dynamics in the near-wall region is fundamental to correctly predict the overall flow. The present approach achieves sufficient accuracy at the immersed boundary and overcomes deficiencies in previous IB methods by introducing additional constraints – a compatibility for the interpolated velocity boundary condition related to mass conservation and the formal decoupling of the pressure on this surfaces. The immersed boundary-approximated domain method (IB-ADM) developed in the present study satisfies these conditions with an inexpensive computational overhead. The IB-ADM correctly predicts the near-wall velocity, pressure and scalar fields in several example problems, including flows around a very thin solid object for which incorrect results were obtained with previous IB methods. In order to have sufficient near-wall mesh resolution for LES and DNS computations, the present approach uses local mesh refinement. The present method has been also successfully applied to computation of the wall-pressure space–time correlation in DNS of turbulent channel flow on grids not aligned with the boundaries. When applied to a turbulent flow around an airfoil, the computed flow statistics – the mean/RMS flow field and power spectra of the wall pressure – are in good agreement with experiment.  相似文献   

16.
刘超峰  倪玉山 《中国物理 B》2008,17(12):4554-4561
This paper studies the roughness effect combining with effects of rarefaction and compressibility by a lattice Boltzmann model for rarefied gas flows at high Knudsen numbers. By discussing the effect of the tangential momentum accommodation coefficient on the rough boundary condition, the lattice Boltzmann simulations of nitrogen and helium flows are performed in a two-dimensional microchannel with rough boundaries. The surface roughness effects in the microchannel on the velocity field, the mass flow rate and the friction coefficient are studied and analysed. Numerical results for the two gases in micro scale show different characteristics from macroscopic flows and demonstrate the feasibility of the lattice Boltzmann model in rarefied gas dynamics.  相似文献   

17.
A hydrodynamic boundary condition is developed for lattice Boltzmann hydrodynamics using a square, orthogonal grid. A constraint based on energy considerations is developed to provide closure for the equations which govern the particle distribution at the boundaries. This boundary condition is applied to the two-dimensional, steady flow of an incompressible fluid behind a grid, known as Kovasznay flow. The results are compared to those using alternate boundary conditions using the known exact solution. The hydrodynamic boundary condition produces quadratic spatial convergence, while alternate techniques fail to maintain this second-order accuracy.  相似文献   

18.
A stencil adaptive lattice Boltzmann method (LBM) is developed in this paper. It incorporates the stencil adaptive algorithm developed by Ding and Shu [26] for the solution of Navier–Stokes (N–S) equations into the LBM calculation. Based on the uniform mesh, the stencil adaptive algorithm refines the mesh by two types of 5-points symmetric stencils, which are used in an alternating sequence for increased refinement levels. The two types of symmetric stencils can be easily combined to form a 9-points symmetric structure. Using the one-dimensional second-order interpolation recently developed by Wu and Shu [27] along the straight line and the D2Q9 model, the adaptive LBM calculation can be effectively carried out. Note that the interpolation coefficients are only related to the lattice velocity and stencil size. Hence, the simplicity of LBM is not broken down and the accuracy is maintained. Due to the use of adaptive technique, much less mesh points are required in the simulation as compared to the standard LBM. As a consequence, the computational efficiency is greatly enhanced. The numerical simulation of two dimensional lid-driven cavity flows is carried out. Accurate results and improved efficiency are reached. In addition, the steady and unsteady flows over a circular cylinder are simulated to demonstrate the capability of proposed method for handling problems with curved boundaries. The obtained results compare well with data in the literature.  相似文献   

19.
《Physics letters. A》2006,354(3):173-182
A momentum exchange-based immersed boundary-lattice Boltzmann method is presented in this Letter for simulating incompressible viscous flows. This method combines the good features of the lattice Boltzmann method (LBM) and the immersed boundary method (IBM) by using two unrelated computational meshes, an Eulerian mesh for the flow domain and a Lagrangian mesh for the solid boundaries in the flow. In this method, the non-slip boundary condition is enforced by introducing a forcing term into the lattice Boltzmann equation (LBE). Unlike the conventional IBM using the penalty method with a user-defined parameter or the direct forcing scheme based on the Navier–Stokes (NS) equations, the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. Numerical examples show that the present method can provide very accurate numerical results.  相似文献   

20.
吴晓笛  刘华坪  陈浮 《物理学报》2017,66(22):224702-224702
针对流固耦合问题,发展了基于浸入边界-多松弛时间格子玻尔兹曼通量求解法(immersed boundary method multi-relaxation-time lattice Boltzmann flux solver,IB-MRT-LBFS)的弱耦合算法.依据多尺度Chapman-Enskog展开,建立不可压宏观方程状态变量和通量与格子玻尔兹曼方程中粒子密度分布函数之间的关系;采用强制浸入边界法处理流固界面使固壁表面满足无滑移边界条件,根据修正的速度求解动量方程力源项;结构运动方程采用四阶龙格-库塔法求解.格子模型与浸入边界法的引入使流固耦合计算可以在笛卡尔网格下进行,无需生成贴体网格及运用动网格技术,简化了计算过程.数值模拟了单圆柱横向涡激振动、单圆柱及串列双圆柱双自由度涡激振动问题.结果表明,IB-MRT-LBFS能够准确预测圆柱涡激振动的锁定区间、振动响应、受力情况以及捕捉尾流场结构形态,验证了该算法在求解流固耦合问题的有效性和可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号