首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R. P. Dhote  R. N. V. Melnik  J. Zu 《Meccanica》2014,49(7):1561-1575
The objective of this paper is to provide new insight into the dynamic thermo-mechanical properties of shape memory alloy (SMA) nanowires subjected to multi-axial loadings. The phase-field model with Ginzburg–Landau energy, having appropriate strain based order parameter and strain gradient energy contributions, is used to study the martensitic transformations in the representative 2D square-to-rectangular phase transformations for FePd SMA nanowires. The microstructure and mechanical behavior of martensitic transformations in SMA nanostructures have been studied extensively in the literature for uniaxial loading, usually under isothermal assumptions. The developed model describes the martensitic transformations in SMAs based on the equations for momentum and energy with bi-directional coupling via strain, strain rate and temperature. These governing equations of the thermo-mechanical model are numerically solved simultaneously for different external loadings starting with the evolved twinned and austenitic phases. We observed a strong influence of multi-axial loading on dynamic thermo-mechanical properties of SMA nanowires. Notably, the multi-axial loadings are quite distinct as compared to the uniaxial loading case, and the particular axial stress level is reached at a lower strain. The SMA behaviors predicted by the model are in qualitative agreements with experimental and numerical results published in the literature. The new results reported here on the nanowire response to multi-axial loadings provide new physical insight into underlying phenomena and are important, for example, in developing better SMA-based MEMS and NEMS devices  相似文献   

2.
Based on the knowledge of the anisotropy associated with the martensitic transformations obtained from tension/compression experiments with oriented CuAlNi single crystals, a simple constant stress averaging approach is employed to model the SMA polycrystal deformation behaviors. Only elastic and inelastic strains due to the martensitic transformation, variant reorientations in the martensite phase and martensite to martensite transformations in thermomechanical loads are considered. The model starts from theoretical calculation of the stress-temperature transformation conditions and their orientation dependence from basic crystallographic and material attributes of the martensitic transformations. Results of the simulations of the NiTi, NiAl, and Cu-based SMA polycrystals in stress–strain tests are shown. It follows that SMA polycrystals, even with randomly oriented grains, typically exhibit tension/compression asymmetry of the shape of the pseudoelastic σε curves in transformation strain, transformation stress, hysteresis widths, character of the pseudoelastic flow and in the slope of temperature dependence of the transformation stresses. It is concluded that some macroscopic features of the SMA polycrystal behaviors originate directly from the crystallography of the undergoing MT's. The model shows clearly the crystallographic origin of these phenomena by providing a link from the crystallographic and material attributes of martensitic transformations towards the macroscopic σεT behaviors of SMA polycrystals.  相似文献   

3.
Within the framework of a model of nonlinear deformations of shape memory alloys (SMA) under phase and structural transformations and for different statements of the problem, an analytical solution of the problem of stability of an SMA rod undergoing a direct martensitic phase transformation under the action of a compressive load is obtained. It is shown that taking account of the nonlinearity of the deformation process and structural transformation in the transition into the adjacent form of equilibrium significantly changes the solution for sufficiently flexible rods. At the same time, taking into account the strains developed in a phase transition is topical for thick-walled SMA elements.  相似文献   

4.
As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA’s strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA’s energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.  相似文献   

5.
We develop a multiscale thermomechanical model to analyze martensitic phase transformations from a cubic crystalline lattice to a tetragonal crystalline lattice. The model is intended for simulating the thermomechanical response of single-crystal grains of austenite. Based on the geometrically nonlinear theory of martensitic transformations, we incorporate microstructural effects from several subgrain length scales. The effective stiffness tensor at the grain level is obtained through an averaging scheme, and preserves crystallographic information from the lattice scale as well as the influence of volumetric changes due to the transformation. The model further incorporates a transformation criterion that includes a surface energy term, which takes into account the creation of interfaces between martensite and austenite. These effects, which are often neglected in martensitic transformation models, thus appear explicitly in the expression of the transformation driving force that controls the onset and evolution of the transformation. In the derivation of the transformation driving force, we clarify the relations between different combinations of thermodynamic potentials and state variables. The predictions of the model are illustrated by analyzing the response of a phase-changing material subjected to various types of deformations. Although the model is developed for cubic to tetragonal transformations, it can be adapted to simulate martensitic transformations for other crystalline structures.  相似文献   

6.
Nucleation and development of phase transformation fronts in TiNi shape memory alloy subjected to the stress- and strain-controlled tension tests were investigated. A thermovision camera was applied to register the distribution of infrared radiation emitted by the specimen and to find its temperature variations. During the loading, narrow bands of considerably higher temperature corresponding to the martensitic phase, starting from the central part of the specimen and developing towards the specimen grips, under both approaches, were registered. The inclined bands of heterogeneous temperature distribution were observed also during the unloading process of the SMA, while the reverse transformation accompanied by temperature decrease took place. Thermomechanical aspects of martensitic and reverse transformations for various strain rates were analyzed under both stress- and strain-controlled tests.  相似文献   

7.
8.
9.
A method is presented to construct nonconvex free energies that are invariant under a symmetry group. Algebraic and geometric methods are used to determine invariant functions with the right location of minimizers. The methods are illustrated for symmetry-breaking martensitic phase transformations. Computer algebra is used to compute a basis of the corresponding class of invariant functions. Several phase transitions, such as cubic-to-orthorhombic, are discussed. An explicit example of an energy for the cubic-to-tetragonal phase transition is given.  相似文献   

10.
In an earlier work, Elliott et al. [2006a, Stability of crystalline solids—II: application to temperature-induced martensitic phase transformations in bi-atomic crystals. Journal of the Mechanics and Physics of Solids 54(1), 193-232], the authors used temperature-dependent atomic potentials and path-following bifurcation techniques to solve the nonlinear equilibrium equations and find the temperature-induced martensitic phase transformations in stress-free, perfect, equi-atomic binary B2 crystals. Using the same theoretical framework, the current work adds the influence of stress to study the model's stress-induced martensitic phase transformations.The imposition of a uniaxial Biot stress on the austenite (B2) crystal, lowers the symmetry of the problem, compared to the stress-free case, and leads to a large number of stable equilibrium paths. To determine which ones are possible reversible martensitic transformations, we use the (kinematic) concept of the maximal Ericksen-Pitteri neighborhood (max EPN) to select those equilibrium paths with lattice deformations that are closest, with respect to lattice-invariant shear, to the austenite phase and thus capable of a reversible transformation. It turns out that for our chosen parameters only one stable structure (distorted αIrV) is found within the max EPN of the austenite in an appropriate stress window. The energy density of the corresponding configurations shows features of a stress-induced phase transformation between the higher symmetry austenite and lower symmetry martensite paths and suggests the existence of hysteretic stress-strain loops under isothermal load-unload conditions. Although the perfect crystal model developed in this work over-predicts many key material properties, such as the transformation stress and the Clausious-Clapeyron slope, when compared to real experimental values (based on actual polycrystalline specimens with defects), it is—to the authors' knowledge—the first atomistic model that has been demonstrated to capture all essential trends and behavior observed in shape memory alloys.  相似文献   

11.
12.
The universal (i.e. independent of the constitutive equations) thermodynamic driving force for coherent interface reorientation during first-order phase transformations in solids is derived for small and finite strains. The derivation is performed for a representative volume with plane interfaces, homogeneous stresses and strains in phases and macroscopically homogeneous boundary conditions. Dissipation function for coupled interface (or multiple parallel interfaces) reorientation and propagation is derived for combined athermal and drag interface friction. The relation between the rates of single and multiple interface reorientation and propagation and the corresponding driving forces are derived using extremum principles of irreversible thermodynamics. They are used to derive complete system of equations for evolution of martensitic microstructure (consisting of austenite and a fine mixture of two martensitic variants) in a representative volume under complex thermomechanical loading. Viscous dissipation at the interface level introduces size dependence in the kinetic equation for the rate of volume fraction. General relationships for a representative volume with moving interfaces under piece-wise homogeneous boundary conditions are derived. It was found that the driving force for interface reorientation appears when macroscopically homogeneous stress or strain are prescribed, which corresponds to experiments. Boundary conditions are satisfied in an averaged way. In Part 2 of the paper [Levitas, V.I., Ozsoy, I.B., 2008. Micromechanical modeling of stress-induced phase transformations. Part 2. Computational algorithms and examples. Int. J. Plasticity (2008)], the developed theory is applied to the numerical modeling of the evolution of martensitic microstructure under three-dimensional thermomechanical loading during cubic-tetragonal and tetragonal-orthorhombic phase transformations.  相似文献   

13.
This contribution deals with the nonlinear analysis of shape memory alloy (SMA) adaptive trusses employing the finite element method. Geometrical nonlinearities are incorporated into the formulation together with a constitutive model that describes different thermomechanical behaviors of SMA. It has four macroscopic phases (three variants of martensite and an austenitic phase), and considers different material properties for austenitic and martensitic phases together with thermal expansion. An iterative numerical procedure based on the operator split technique is proposed in order to deal with the nonlinearities in the constitutive formulation. This procedure is introduced into ABAQUS as a user material routine. Numerical simulations are carried out illustrating the ability of the developed model to capture the general behavior of shape memory bars. After that, it is analyzed the behavior of some adaptive trusses built with SMA actuators subjected to different thermomechanical loadings.  相似文献   

14.
利用WMW-1型摩擦磨损试验机研究了在相同条件下相变温度对6种NiTi形状记忆合金耐磨性的影响,并分析其磨损机制.结果表明:超弹状态NiTi合金具有热弹性马氏体相变、高阻尼效应、应力诱发马氏体和超弹性等特性而使得其耐磨性较好,合金的耐磨性主要取决于相变温度、Ni原子的析出情况和合金硬度.  相似文献   

15.
The paper presents a consistent integration scheme for a model of shape memory alloys that takes into account the processes of detwinning and reorientation of martensite. Lagrange multipliers are used to account for the saturation condition on the martensitic phase, which expresses the requirement on the inelastic deformation of martensite not to exceed a material-specific value. A detailed procedure for implicit time integration of the constitutive equations is given, including a comprehensive derivation of a closed-form expression for the consistent tangent moduli. The equations are implemented into a commercial finite element software, which is used to simulate the response of martensitic SMA structures to complex loading. The results are shown to agree with experimental data taken from the literature.  相似文献   

16.
The aim of the paper is to develop a micro–macro approach for the analysis of the mechanical behavior of composites obtained embedding long fibers of Shape Memory Alloys (SMA) into an elastic matrix. In order to determine the overall constitutive response of the SMA composites, two homogenization techniques are proposed: one is based on the self-consistent method while the other on the analysis of a periodic composite. The overall response of the SMA composites is strongly influenced by the pseudo-elastic and shape memory effects occurring in the SMA material. In particular, it is assumed that the phase transformations in the SMA are governed by the wire temperature and by the average stress tensor acting in the fiber. A possible prestrain of the fibers is taken into account in the model.Numerical applications are developed in order to analyze the thermo-mechanical behavior of the SMA composite. The results obtained by the proposed procedures are compared with the ones determined through a micromechanical analysis of a periodic composite performed using suitable finite elements.Then, in order to study the macromechanical response of structural elements made of SMA composites, a three-dimensional finite element is developed implementing at each Gauss point the overall constitutive laws of the SMA composite obtained by the proposed homogenization procedures. Some numerical applications are developed in order to assess the efficiency of the proposed micro–macro model.  相似文献   

17.
18.
Phase transformational shakedown of a structure refers to a status that plastic strains cease developing after a finite number of loading cycles, and subsequently the structure undergoes only elastic deformation and alternating phase transformations with limited magnitudes. Due to the intrinsic complexity in the constitutive relations of shape memory alloys (SMA), there is as yet a lack of effective methods for modeling the mechanical responses of SMA structures, especially when they develop both phase transformation and plastic deformation. This paper is devoted to present an algorithm for analyzing shakedown of SMA structures subjected to cyclic or varying loads within specified domains. Based on the phase transformation and plastic yield criteria of von Mises-type and their associated flow rules, a simplified three-dimensional phenomenological constitutive model is first formulated accounting for different regimes of elastic–plastic deformation and phase transformation. Different responses possible for SMA bodies exposed to varying loads are discussed. The classical Melan shakedown theorem is extended to determine a lower bound of loads for transformational shakedown of SMA bodies without necessity of a step-by-step analysis along the loading history. Finally, a simple example is given to illustrate the application of the present theory as well as some basic features of shakedown of SMA structures. It is interesting to find that phase transformation may either increase or decrease the load-bearing capacity of a structure, depending upon its constitutive relations, geometries and the loading mode.  相似文献   

19.
In the present work we propose a new thermomechanically coupled material model for shape memory alloys (SMA) which describes two important phenomena typical for the material behaviour of shape memory alloys: pseudoelasticity as well as the shape memory effect. The constitutive equations are derived in the framework of large strains since the martensitic phase transformation involves inelastic deformations up to 8%, or even up to 20% if the plastic deformation after the phase transformation is taken into account. Therefore, we apply a multiplicative split of the deformation gradient into elastic and inelastic parts, the latter concerning the martensitic phase transformation. An extended phase transformation function has been considered to include the tension–compression asymmetry particularly typical for textured SMA samples. In order to apply the concept in the simulation of complex structures, it is implemented into a finite element code. This implementation is based on an innovative integration scheme for the existing evolution equations and a monolithic solution algorithm for the coupled mechanical and thermal fields. The coupling effect is accurately investigated in several numerical examples including pseudoelasticity as well as the free and the suppressed shape memory effect. Finally, the model is used to simulate the shape memory effect in a medical foot staple which interacts with a bone segment.  相似文献   

20.
In this work, a nonlocal phenomenological behavior model is proposed in order to describe the localization and propagation of stress-induced martensite transformation in shape memory alloy (SMA) wires and thin films. It is a nonlocal extension of an existing local model that was derived from a micromechanical-inspired Gibbs free energy expression. The proposed model uses, besides the local field of the internal variable, namely the martensite volume fraction, a nonlocal counterpart. This latter acts as an additional degree of freedom, which is determined by solving an additional partial differential equation (PDE), derived so as to be equivalent to the integral definition of a nonlocal quantity. This PDE involves an internal length parameter, dictating the global scale at which the nonlocal interactions of the underlying micromechanisms are manifested during phase transformation. Moreover, to account for the unstable softening behavior, the transformation yield force parameter is considered as a gradually decreasing function of the martensite fraction. Possible material and geometric imperfections that are responsible for localization initiation are also considered in this analysis. The obtained constitutive equations are implemented in the Abaqus® finite element code in one and two dimensions. This requires the development of specific finite elements having the nonlocal volume fraction variable as an additional degree of freedom. This implementation is achieved through the UEL user’s subroutine. The effect of martensitic localization on the superelastic global behavior of SMA wire and holed thin plate, subjected to tension loading, is analyzed. Numerical results show that the developed tool correctly captures the commonly observed unstable superelastic behavior characterized by nucleation and propagation of martensitic phase. In particular, they show the influence of the internal length parameter, appearing in the nonlocal model, on the size of the localization area and the stress nucleation peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号