首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chelating resins with thioglycolate anchor groups have been synthesized by reaction of sucrosemethacrylate gels with thioglycolic acid. The capacities of the gels were found to be extremely high for Ag+ (5,3 mmol/g) and Hg2+ (4,9 mmol/g). About 1 mmol Hg2+/g could be recovered from the gel reversibly by treatment with hydrochloric acid. The removal of Hg2+ from aqueous 3M alkalichloride solutions was possible with capacities of 1 mmol/g.Sucrosemethacrylate gels with primary aromatic amino group were reacted with CS2/NH3 to yield gels with dithiocarbamate groups. Gels with thiorea groups were prepared by reaction of the amino groups with NH4SCN/HCl. Diazotation of the amino groups, subsequent reaction with potassium xanthogenate and hydrolysis afforded gels with thiol groups. Thiol containing gels were synthesized also by reaction of the diazotised gels with Na2S2 and subsequent reduction with Na2S. Reaction of the diazotised gels with mercaptans yielded resins with thioether anchor groups. The capacities of the sulfur containing gels were found to be max. 4,1 mmol/g for Hg2+ and 5,9 mmol/g for Ag+. About 35% of the bonded Hg2+ could be eluted resersibly with 3N-HCl.
  相似文献   

2.
This article describes an electrochemical metal-ion sensor based on a cobalt phthalocyanine (CoPc) complex and determination of its sensor activity for some transition metal ions. Ag+ and Hg2+, among several transition metal ions, coordinate to the sulfur donors of CoPc and alter the electrochemical responses of CoPc in solution, indicating possible application of the complex as Ag+ and Hg2+ sensor. For practical application, CoPc was encapsulated into a polymeric cation exchange membrane, Nafion, on a glassy carbon electrode and used as an electrochemical coordination element. This composite electrode was potentiometrically optimized and potentiometrically and amperometrically characterized as transition metal-ion sensors with respect to reproducibility, repeatability, stability, selectivity, linear concentration range, and sensitivity. A µmol?dm?3 sensitivity of the CoPc-based sensor indicates its possible practical application for the determination of Ag+ and Hg+2 in waste water samples.  相似文献   

3.
A new chelating resin containing bis[2-(2-benzothiazolylthioethyl)sulfoxide] was synthesized using chloromethylated polystyrene as material and characterized by elemental analysis and infrared spectra. The adsorption capacities of the newly formed resin for Hg2+, Ag+, Cu2+, Zn2+, Pb2+, Mn2+, Ni2+, Cd2+ and Fe3+ were investigated over the pH range 1.0-6.0. The resin exhibited no affinity for alkali or alkaline earth metal ions. The maximum adsorption capacities of the resin for Hg2+, Ag+, Cu2+, Zn2+, Pb2+, Mn2+, Ni2+, Cd2+ and Fe3+ were 1.49, 0.96, 0.58, 0.11, 0.37, 0, 0.24, 0.36 and 0.25 mmol g−1, respectively. In column operation it had been observed that Hg2+ and Ag+ in trace quantity could be separated from different binary mixtures and Hg2+ could be effectively removed from industrial wastewater and the natural water spiked with Hg2+ at usual pH.  相似文献   

4.
An approach for the sensitive and selective determination of Ag+, Cu2+ and Hg2+ ions was developed based on the fluorescence quenching of mercaptopropionic acid (MPA) capped CdTe quantum dots in the existence of hydroxyapatite (HAP) nanoribbon spherulites. Among various metal ions investigated, it was found that the fluorescence of CdTe QDs was only sensitive to Ag+, Cu2+ and Hg2+ ions. The addition of HAP into the CdTe system could bring forward a sensitivity improvement of about 1 to 2 orders of magnitude in the detection of Ag+ and Cu2+ compared with the plain CdTe system without the existence of HAP; while there was no sensitization effect for Hg2+. Under optimal conditions, the detection limits for Ag+, Cu2+ and Hg2+ were 20, 56 and 3.0 nmol·L?1, respectively, and the linear ranges were 0.02–50, 0.056–54 and 0.003–2.4 µmol·L?1, respectively. Mechanisms of both QDs fluorescence quenching by metal ions and the sensitization effect by HAP were also discussed.  相似文献   

5.
We demonstrate a new material by intercalating Mo3S132? into Mg/Al layered double hydroxide (abbr. Mo3S13-LDH), exhibiting excellent capture capability for toxic Hg2+ and noble metal silver (Ag). The as-prepared Mo3S13-LDH displays ultra-high selectivity of Ag+, Hg2+ and Cu2+ in the presence of various competitive ions, with the order of Ag+>Hg2+>Cu2+>Pb2+≥Co2+, Ni2+, Zn2+, Cd2+. For Ag+ and Hg2+, extremely fast adsorption rates (≈90 % within 10 min, >99 % in 1 h) are observed. Much high selectivity is present for Ag+ and Cu2+, especially for trace amounts of Ag+ (≈1 ppm), achieving a large separation factor (SFAg/Cu) of ≈8000 at the large Cu/Ag ratio of 520. The overwhelming adsorption capacities for Ag+ (qmAg=1073 mg g?1) and Hg2+ (qmHg=594 mg g?1) place the Mo3S13-LDH at the top of performing sorbent materials. Most importantly, Mo3S13-LDH captures Ag+ via two paths: a) formation of Ag2S due to Ag-S complexation and precipitation, and b) reduction of Ag+ to metallic silver (Ag0). The Mo3S13-LDH is a promising material to extract low-grade silver from copper-rich minerals and trap highly toxic Hg2+ from polluted water.  相似文献   

6.
The reaction kinetics between acetic acid and Ag2+ in nitric acid medium is studied by spectrophotometry. The effects of concentrations of acetic acid (HAc), H+, NO?3, and temperature on the reaction are investigated. The rate equation has been determined to be –dc(Ag2+)/dt = kc(Ag2+)c(HAc)c?1(H+), where k = (610 ± 15) (mol/L)?1 min?1 with an activation energy of about (48. 8 ± 3.5) kJ mol?1 when the reaction temperature is 25°C and the ionic strength is 4.0 mol L?1. The reduction rate of Ag2+ increases with the increase in HAc concentration and/or temperature and the decrease in HNO3 concentration. However, the effect of NO?3 concentrations within 0.5–2.5 mol L?1 on the reaction rate is negligible. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 47–51, 2013  相似文献   

7.
 本文报道了以多乙烯多胺为主链的巯基胺树脂与二硫化碳反应,合成了四种新型的氨基二硫代甲酸型螯合树脂,这类树脂对贵金属具有高的吸附容量和优良的吸附选择性。并通过红外光谱和X光电子能谱研究树脂及其金属螫合物。  相似文献   

8.
2-Mercapto-N-2-naphthylacetamide (thionalide) loaded on glass beads with the aid of collodion is used for preconcentration of microgram levels of antimony(III) from aqueous solution. Antimony is quantitatively retained on the loaded beads from 0.4–0.8 mol l?1 hydrochloric acid solutions; equilibration is achieved within 1 min. The retention capacity of the beads is 0.2 μml Sb g?1 at 0.6 mol l?1 hydrochloric acid. The maximum flow rate for quantitative retention is 1.27 ml min?1 cm?2. Antimony retained on the column is completely eluted with 10 ml of 6.0 mol l?1 hydrochloric acid at flow rates<1.9 ml min?1 cm?2.  相似文献   

9.
Label-free Hg2+ aptamer was used as a sensing element and the PicoGreen dye was specific to ultra-sensitive double-stranded DNA (dsDNA), which achieved novel fluorescence assay for detection of both mercury and silver ions. In this aptasensor, Hg2+ bound to thymidine (T) to form T–Hg2+-T base pairs and Ag+ specifically interacted with C–C mismatches to produce C–Ag+–C base pairs. The conformation changes prevented the aptamer from binding to its complementary sequences to form dsDNA and caused a fluorescence intensity decrease with PicoGreen. The change in the fluorescence intensity made it possible to detect both Hg2+ and Ag+ in a dose-dependent manner. The sensing system could detect as low as 5 × 10–8 mol/L of Hg2+ and 9.3 × 10–10 mol/L of Ag+. The fluorescent intensity changes in the system were specific for Hg2+ and Ag+, making this simple and cost-effective method extremely valuable in its future applications in monitoring Hg2+ and Ag+ pollution in environmental analysis.  相似文献   

10.
NMR Studies of the Kinetic Limitation of Cation Selectivity of a Cadmium-Selective Ionophore The Cd2+-selective ionophore N,N,N′,N′-tetrabutyl-3, 6-dioxaoctanedithioamide (1) looses its capability to induce cation selectivity in solvent polymeric membranes if these are contacted with Cu2+, Pd2+, Pt2+, Ag+ and Hg2+. For systems with a free energy of activation of the ligand exchange reaction of more than about 65 kJ mol?1 (in acetonitrile) the cation complexes of the ionophore act as anion exchangers (Pt2+, Pd2+). Below about 45 kJ mol?1 cation permselectivity is observed (Zn2+, Cd2+). Ag+ and Hg2+ induce a decomposition of the ionophore.  相似文献   

11.
This research, for the first time, demonstrates a direct electrochemical detection of bisphenol A (BPA) using silver oxide (Ag2O) nanocubes (NCs) modified platinum electrode. The Ag2O NCs, size ranging from 60 to 100 nm utilized in this research as a smart electro-active sensing platform were pure and synthesized using a cost-effective, affordable, and facile chemical route. The Ag2O NCs modified electrochemical sensor exhibited a low limit of detection (LOD) as 20 nmol dm?3, high sensitivity as 95 μA (μmol dm?3)?1 cm?2, and linear dynamic range (LDR) varies from 80 nmol dm?3- 4.8 μmol dm?3. This sensor also showed good selectivity, reproducibility, and reusability for BPA detection. The practical application of developed sensor was also tested using real water samples. The outcomes of this research suggested that Ag2O NCs based sensor can be useful for effective and efficient electrochemical BPA sensing in both real and lab samples.  相似文献   

12.
A stable chelating resin matrix was prepared by covalently linking resorcinol with polyurethane foam matrix through a –N=N– group. Preconcentration and determination of trace Ag+ and Hg2+ ions from samples of different origin, using Res-PUF, were studied. Various conditions influencing the sorption of these metal ions onto Res-PUF were optimized. The kinetics of sorption of the Ag+ and Hg2+ by Res-PUF were found to be fast, reached equilibrium in few minutes (5–10?min) and followed a first-order rate equation with an overall rate constant k in 0.102 and 0.267/min, respectively. Study of the variation of the sorption of the tested metal ions with temperature yielded average values for ΔG, ΔH and ΔS of ?3.94, ?22.02 and ?58.37, respectively. The mean free sorption energy (E) computed from the Dubinin–Radushkevich (D–R) isotherm was found to be equal to 8.91 kJ/mol, which reflects the chelation sorption process. The capacities of the foam material were 0.15 and 0.07?mmol/g for Ag+ and Hg2+, respectively. Preconcentration factors of?>?50 were achieved (RSD?≈?5.99). The proposed preconcentration procedure was applied successfully to the determination of trace metal ions in natural and wastewater samples.  相似文献   

13.
The reaction between Au(I), generated by reaction of thallium(I) with Au(III), and peroxydisulphate was studied in 5 mol dm?3 hydrochloric acid. The reaction proceeds with the formation of an ion‐pair between peroxydisulphate and chloride ion as the Michealis–Menten plot was linear with intercept. The ion‐pair thus formed oxidizes AuCl2? in a slow two‐electron transfer step without any formation of free radicals. The ion‐pair formation constant and the rate constant for the slow step were determined as 113 ± 20 dm?3 mol?1 and 5.0 ± 1.0 × 10?2 dm3 mol?1 s?1, respectively. The reaction was retarded by hydrogen ion, and formation of unreactive protonated form of the reductant, HAuCl2, causes the rate inhibition. From the hydrogen ion dependence of the reaction rate, the protonation constant was calculated to be as 0.6 ± 0.1 dm3 mol?1. The activation parameters were determined and the values support the proposed mechanism. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 589–594, 2002  相似文献   

14.
The kinetics and mechanism of the reaction of complexation of iron(III) with 2,4-octanedione and 2,4-nonanedione have been investigated spectrophotometrically in aqueous solution at 10°C and ionic strength 0.5 mol dm?3 NaClO4. The equilibrium constants of the mono-complexes have been determined. The mechanism proposed to account for the kinetic data involves a double reversible pathway where both Fe3+ and Fe(OH)2+ react with the enol tautomer of the ligand. 2,4-Octanedione reacts with Fe3+ and Fe(OH)2+ with rate constants of 0.65 dm3 mol?1 s?1, and 14.07 dm3 mol?1 s?1, respectively. For 2,4-nonanedione complexation the rate constants determined are 0.49 dm3 mol?1 s?1, and 11.39 dm3 mol?1 s?1, respectively. Some discussions are made on the basis of Eigen-Wilkins theory considering the effect of solvent exchange on the complex formation. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
A series of macroporous dithiocarbamate chelate resins, III and V, and an oxidized resin, VI, with high adsorption capacity were prepared. The influence of various reaction conditions of amination, dithiocarboxylation, and oxidation were examined. The structure and the conversion of functional groups of resins were confirmed by IR spectra and elemental analysis. The adsorption capacities of Resin II for Hg2+, Cu2+, Zn2+, and Cd2+ are 4.40, 2.44, 1.77, and 1.36 mmol/g, respectively. The adsorption capacities of Resins V and VI for Cu2+. Zn2+, Ni2+, Co3+, Ag+, Hg2+, Cd2+, Pb2+, and Au3+ are 4.07–0.51 and 3.81–0.59 meq ion/g, respectively. The adsorption rate and the influence of pH on the adsorption percentage of the resins for metal ions were examined. Noble metal, transitional metal, and heavy metal ions can be quantitatively adsorbed by the resins. The adsorbed Cu2+, Pb2+, Cd2+, Co3+, and Ni2+ can be quantitatively eluted with 5N HNO3, and the presence of large amounts of Ca2+, Mg2+, Fe3+, and Al3+ did not interfere.  相似文献   

16.
The coordination behaviour of the redox-active polyazacycloalkane L1 against the toxic heavy-metal ions Cd2+, Pb2+, and Hg2+ was studied in THF/H2O 70 : 30 (containing 0.1 mol⋅dm−3 of (Bu4N)ClO4). The crystal and molecular structure of the cadmium complex [Cd(L1)(NO3)2] ( 1 ) was determined by X-ray single-crystal analysis. The cadmium ion is in a 4+2 surrounding with the ligand L1 acting as tetradentate and the apical positions occupied by the O-atoms of the nitrate anions. An electrochemical study reveals that L1 shows a selective electrochemical response against Hg2+ over Cd2+ and Pb2+.  相似文献   

17.
A new Schiff base fluorescence probe, 3-Allylsalicylaldehyde salicylhydrazone (L), for Mg2+ was designed and synthesized. The fluorescence of the sensor L was enhanced remarkably by Mg2+ with 2:1 binding ratio, and the binding constant was determined to be 1.02 × 107 M?1. Probe L had high sensitivity for Mg2+ in a solution of DMF/water (4:1, v/v, pH 7.5), and the detection limit was 4.88 × 10?8 mol/L. Common coexistent metal ions, such as K+, Na+, Ag+, Ca2+, Zn2+, Ba2+, Bi2+, Cu2+, Ni2+, Hg2+, Fe3+ , and Al3+, showed little or no interference on the detection of Mg2+ in solution. The fluorescence probe L, which was successfully used for the determination of trace Mg(II) in real samples, was shown to be promising for liquid-phase extraction coupled with fluorescence spectra.  相似文献   

18.
In the present paper, we used single-stranded poly-T (100% thymine bases) and poly-C (100% cytosine bases) nucleic acids as DNA probes for selective and sensitive individual electrochemical determination of Hg2+ and Ag+, respectively, on the multi-walled carbon nanotube paste electrodes (MWCNTPEs) using [Fe(CN)6]3?/4? as electroactive labels. In the presence of Hg2+ and Ag+, the probe–Hg2+/Ag+ interactions through T–Hg2+–T and C–Ag+–C complexes formation could cause the formation of a unimolecular hybridized probe. This structure of probe led to its partial depletion from electrode surface and facilitation of electron transfer between [Fe(CN)6]3?/4? redox couple and electrode surface, resulting in the enhanced differential pulse voltammetry (DPV) oxidation current of [Fe(CN)6]3?/4? at the probe-modified electrode surface. We applied the difference in the oxidation peak currents of [Fe(CN)6]3?/4? before and after Hg2+/Ag+–DNA probe bonding (?I) for electrochemical determination of these heavy metal ions. Detection limits were 8.0?×?10?12 M and 1.0?×?10?11 M for Hg2+ and Ag+ ions determination, respectively. The biosensors were utilized to determine the weight percent of toxic metals, i.e., silver and mercury in dental amalgam filling composition. The results of their practical applicability in analysis of the amalgam sample were satisfactory.  相似文献   

19.
Sorption behaviour of monovalent Rb+, Tl+ and Ag+ is studied on chromium fericyanide gel. Log Kd vs log concentration plots show that Rb+ and Tl+ are sorbed through ion exchange mechanism in a higher concentration range of ammonium nitrate or nitric acid, whereas the adsorption of Ag+ is irreversible. It was found possible to elute Rb+ and Tl+ on the columns of this gel by 4 mol dm−3 NH4NO3 and 10 mol dm−3 HNO3, respectively. Binary separations of Rb+ and Tl+ from a number of other metal ions were achieved as other ions were found practically unadsorbed on these columns and were eluted with water of pH 2–3. Achieved separations are of radioanalytical and analytical importance.  相似文献   

20.
Trace amounts of inorganic mercury (Hg2+) and methylmercury cations (MeHg2+) were adsorbed quantitatively from acidic aqueous solution onto a column packed with immobilized dithizone on microcrystalline naphthalene. The trapped mercury was eluted with 10 ml of 7 mol L–1 hydrochloric acid solution. The Hg2+ was then directly reduced with tin (II) chloride, and volatilized mercury was determined by cold vapor atomic absorption spectrometry (CVAAS). Total mercury (Hgt) was determined after decomposition of MeHg+ into Hg2+. Hg2+ and MeHg+ cations were completely recovered from the water with a preconcentration factor of 200. The relative standard deviation obtained for eight replicate determinations at a concentration of 0.3 g L–1 was 1.8%. The procedure was applied to analysis of water samples, and the accuracy was assessed via recovery experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号