首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The geometry optimization of Fe n C m and Fe n C m + nanoparticles from FeC4 to Fe7C8 was carried out using DMol3 method. The most stable isomers for neutral and charged clusters are found with the use of ‘binomial’ scheme. For each investigated composition, the value of binding energy per atom for the ground isomer was evaluated as well as the number of configurations with binding energies which are close to that of the ground geometry. In almost all compositions, the isomers with ferromagnetic ordering of spins on Fe atoms are found to have the greater dissociation energy than those with any other spin ordering.  相似文献   

2.
3.
Adsorption isotherms of carbon dioxide (CO2), methane (CH4), and nitrogen (N2) on Hβ and sodium exchanged β-zeolite (Naβ) were volumetrically measured at 273 and 303 K. The results show that all isotherms were of Brunauer type Ⅰ and well correlated with Langmuir-Freundlich model. After sodium ions exchange, the adsorption amounts of three adsorbates increased, while the increase magnitude of CO2 adsorption capacity was much higher than that of CH4 and N2. The selectivities of CO2 over CH4 and CO2 over N2 enhanced after sodium exchange. Also, the initial heat of adsorption data implied a stronger interaction of CO2 molecules with Na+ ions in Naβ. These results can be attributed to the larger electrostatic interaction of CO2 with extraframework cations in zeolites. However, Naβ showed a decrease in the selectivity of CH4 over N2, which can be ascribed to the moderate affinity of N2 with Naβ. The variation of isosteric heats of adsorption as a function of loading indicates that the adsorption of CO2 in Naβ presents an energetically heterogeneous profile. On the contrary, the adsorption of CH4 was found to be essentially homogeneous, which suggests the dispersion interaction between CH4 and lattice oxygen atoms, and such interaction does not depend on the exchangeable cations of zeolite.  相似文献   

4.
Adsorption isotherms of carbon dioxide (CO2), methane (CH4), and nitrogen (N2) on Hβand sodium exchanged β-zeolite (Naβ) were volumetrically measured at 273 and 303 K. The results show that all isotherms were of Brunauer type I and well correlated with Langmuir-Freundlich model. After sodium ions exchange, the adsorption amounts of three adsorbates increased, while the increase magnitude of CO2 adsorption capacity was much higher than that of CH4 and N2. The selectivities of CO2 over CH4 and CO2 over N2 enhanced after sodium exchange. Also, the initial heat of adsorption data implied a stronger interaction of CO2 molecules with Na+ ions in Naβ . These results can be attributed to the larger electrostatic interaction of CO2 with extraframework cations in zeolites. However, Naβ showed a decrease in the selectivity of CH4 over N2, which can be ascribed to the moderate affinity of N2 with Naβ. The variation of isosteric heats of adsorption as a function of loading indicates that the adsorption of CO2 in Naβ presents an energetically heterogeneous profile. On the contrary, the adsorption of CH4 was found to be essentially homogeneous, which suggests the dispersion interaction between CH4 and lattice oxygen atoms, and such interaction does not depend on the exchangeable cations of zeolite.  相似文献   

5.
We report on a simple and reliable method for the determination of trace cadmium ion using a glassy carbon electrode (GCE) modified with cupferron, ß-naphthol and MWCNTs. The operational mechanism consists of several steps: first, the ligand cupferron on the modified electrode reacts with Cd2+ ion to form a chelate compound. Next, this chelate is adsorbed by the carrier ß-naphthol following the principle of organic co-precipitation. Finally, the coprecipitated complex is detected by the GCE. This scheme is interesting because it combines preconcentration and electrochemical detection. Two linear responses are obtained, one in the concentration range of 5.0?×?10?11 to 1.6?×?10?8 M, the other in the range of 1.6?×?10?8 to 1.42?×?10?6 M, with a lower detection limit of 1.6?×?10?11 M. This modified GCE does not suffer from significant interferences by Cu(II), Hg(II), Ag(I), Fe(III), Pb(II), Cr(III), Zn(II), NO3?, Cl?, SO 4 2? ions and EDTA. The response of the electrode remained constant for at least 3 weeks of successive operation. The method presented here provides a new way for the simultaneous separation, enrichment, and electrochemical detection of trace cadmium ion.
Figure
Separation, enrichment and electrochemical detection of trace cadmium ion were simultaneously and synchronously carried through on the electrode modified with cupferron, ß-naphthol, and multiwalled carbon nanotubes. It shows higher selectivity, excellent sensitivity and good stability.  相似文献   

6.
The solubility of monocrotaline, a chemotherapeutic drug precursor, in supercritical carbon dioxide and carbon dioxide—ethanol mixtures has been measured from 308.15 to 328.15 K and from 8.86 to 27.41 MPa. The solubility ranges from 6.0 × 10−6 to 2.21 × 10−4 mol fraction increasing up to 25-fold with the addition of ethanol. A new method for the estimation of the sublimation pressure of monocrotaline was developed based on the measured solubilities of monocrotaline in water. The sublimation pressure was then used in the compressed gas model to correlate the behavior of carbon dioxide—monocrotaline and carbon dioxide—ethanol—monocrotaline systems with reasonable success.  相似文献   

7.
The title investigation shows that pyridinium hydrobromide perbromide (PHPB) induced electron transfer reaction in pentaamminecobalt(III) complexes of α-hydroxy acids
such as mandelic, lactic and glycolic acids (R = C6H5), (R = CH3) and (R = H). Towards these complexes, PHPB acts as a two equivalent oxidising agent, yielding CoII and carbon–carbon bond cleavage products. Addition of pyridinium hydrobromide does not affect the rate indicating that PHPB itself is the reactive oxidising species. The rate decreases with an increase in acetic acid content in the solvent mixture. The observed experimental data have been rationalised in terms of a hydride ion transfer in the rate determining step. This oxidation acts as a diagnostic tool to find out the fraction proceeding by synchronous cleavages of C–H and C–C bonds.  相似文献   

8.
The activity of the catalysts obtained by supporting Fe3+ oxalate complexes on -and -Al2O3 in oxidation of CH4, C4H10 and CO has been studied. The composition of the impregnating solution and the temperature of catalyst thermal treatment were varied. The most active catalysts were prepared by impregnation of -Al2O3 with (NH4)3[Fe(C2O4)3] solutions at pH=2.0–3.5. Their activity appears to be close to that of Al-Mg-Cr catalysts in butane oxidation and even exceeds this in CO oxidation.  相似文献   

9.
An amperometric penicillin biosensor with enhanced sensitivity was successfully developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs), hematein, and β-lactamase on glassy carbon electrode using a layer-by-layer assembly technique. Under catalysis of the immobilized enzyme, penicillin was hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron transfer enhancer as well as an efficient immobilization matrix for the sensitivity enhancement. The effects of immobilization procedure, working potential, enzyme quantity, buffer concentration, and sample matrix were investigated. The biosensor offered a minimum detection limit of 50 nM (19 μg L−1) for penicillin V, lower than those of the conventional pH change-based biosensors by more than two orders of magnitude. The electrode-to-electrode variation of the response sensitivity was 7.0% RSD.  相似文献   

10.

In this paper, a new integrated system is proposed consisting of four subsystems, including a Cu–Cl cycle, a carbon capture cycle (sodium-based sorbent), an ammonia production unit, and a methanation unit. Carbon capturing cycle with sodium-based sorbent could adsorb 1.5 times more than other sorbents such as amine-based sorbent. Moreover, Cu–Cl cycle is one of the promising cycles in terms of economic and low temperature. Therefore, integrating these two cycles with ammonia and methane production unit is the novelty for this paper. Also, Aspen plus software was used to simulate the developed system to evaluate the process of the system. Moreover, sensitivity analysis and mass/energy balance are performed for the developed systems through the simulation. The energy required to capture carbon dioxide was found to be 6.313 MW per kg of CO2, and the overall efficiency of the system is equal to 19.6%.

  相似文献   

11.
《Fluid Phase Equilibria》2004,224(1):111-118
The statistical associating fluid theory (SAFT) equation of state is employed for the correlation and prediction of vapor–liquid equilibrium (VLE) of eighteen binary mixtures. These include water with methane, ethane, propane, butane, propylene, carbon dioxide, methanol, ethanol and ethylene glycol (EG), ethanol with ethane, propane, butane and propylene, methanol with methane, ethane and carbon dioxide and finally EG with methane and ethane. Moreover, vapor–liquid equilibrium for nine ternary systems was predicted. The systems are water/ethanol/alkane (ethane, propane, butane), water/ethanol/propylene, water/methanol/carbon dioxide, water/methanol/methane, water/methanol/ethane, water/EG/methane and water/EG/ethane. The results were found to be in satisfactory agreement with the experimental data except for the water/methanol/methane system for which the root mean square deviations for pressure were 60–68% when the methanol concentration in the liquid phase was 60 wt.%.  相似文献   

12.
A metal-free protocol for the selective cleavage of unstrained C–C single bonds was developed. Under the catalysis of KI and in the presence of NaHCO3, the readily available α-chloro-β-hydroxy ketones underwent bond breaking and sulfonylation smoothly to afford β-ketosulfones with high efficiency and broad substrate scope. Mechanism investigations, both experimental and theoretical, showed that a retro-aldol cleavage/nucleophilic substitution sequence might be involved.  相似文献   

13.
Electrochemical synthesis of ruthenium oxide (RuOx) onto Nafion-coated glassy carbon (GC) electrode and naked GC electrode were carried out by using cyclic voltammetry. Electrochemical deposition of RuOx onto Nafion-coated electrode was monitored by in situ electrochemical quartz crystal microbalance (EQCM). Surface characterizations were performed by scanning electron microscope (SEM) and atomic force microscope (AFM). SEM and AFM images revealed that ruthenium oxide particles incorporated onto the Nafion polymer film. In addition, a GC electrode modified with ruthenium oxide–Nafion film (RuOx–Nf–GC) was shown excellent electrocatalytic activity towards dopamine (DA) and ascorbic acid (AA). The anodic peak current increases linearly over the concentration range of 50 μM–1.1 mM for DA with the correlation coefficient of 0.999, and the detection limit was found to be (S/N = 3) 5 μM. Owing to the catalytic effect of the modified film towards DA, the modified electrode resolved the overlapped voltammetric responses of AA and DA into two well-defined voltammetric peaks with peak-to-peak separation about 300 mV. Here, RuOx–Nf–GC electrode employed for determination of DA in the presence of AA. This modified electrode showed good stability and antifouling properties.  相似文献   

14.
The electrochemical oxidation of guanosine-5??-monophosphate (GMP) was studied with a glassy carbon electrode modified with a composite made from graphene and multi-walled carbon nanotubes. GMP undergoes an irreversible oxidation process at an oxidation peak potential of 987?mV in phosphate buffer solution. Compared to other electrodes, the oxidation peak current of GMP with this electrode was significantly increased, and the corresponding oxidation peak potential negatively shifted, thereby indicating that the modified material exhibited electrochemical catalytic activity towards GMP. Chronocoulometry demonstrates that the material also effectively increases the surface area of the electrode and increases the amount of GMP adsorbed. Under the optimum conditions, the oxidation current is proportional to the GMP concentration in the range from 0.1 to 59.7???M with a correlation coefficient of 0.9991. The detection limit is 0.025???M (at S/N?=?3).
Figure
We have developed an electrochemical method for sensitive determination of guanosine-5??-monophosphate (1) based on graphene and multi-walled carbon nanotubes modified glassy carbon electrode by amperometry.  相似文献   

15.
Using scanning electronic microscope, X-ray diffraction analysis, PYR-GCMS and IR etc., we studied the evolving process of the composition and structure of PAN carbon fiber during preoxidation. In the initial stage of preoxidation, PAN filament tows disappear and become semi-thaw. At first, reactions happen between the copolymers and esters disappear. The molecules annularly crosslink and the index of cyclation slowly increases. It is easy to fix the structure and form defects during the initial and the medium stages, which are most reactive. More traction is advised in these stages to minimize the structural deficiencies. In the medium stage of preoxidation, the fiber was reshaped into new sheet stacks and gradually changed to sheet sectors, and this structure tends to be stable in the final stage. Induced by acid and ester copolymer, PAN fiber forms a very stable cycle structure in the final stage. Besides, monomer, dimmer and trimer obviously decrease. In the final stage of the preoxidation, there exi  相似文献   

16.
A new type of composite adsorbents was synthesized by incorporating monoethanol amine (MEA) into β-zeolite. The parent and MEA-functionalized β-zeolites were characterized by X-ray diffraction (XRD), N2 adsorption, and thermogravimetric analysis (TGA). The adsorp-tion behavior of carbon dioxide (CO2), methane (CH4), and nitrogen (N2) on these adsorbents was investigated at 303 K. The results show that the structure of zeolite was well preserved after MEA modification. In comparison with CH4 and N2, CO2 was preferentially adsorbed on the adsorbents investigated. The introduction of MEA significantly improved the selectivity of both CO2/CH4 and CO2/N2, the optimal selectivity of CO2/CH4 can reach 7.70 on 40 wt% of MEA-functionalized β-zeolite (MEA(40)-β) at 1 atm. It is worth noticing that a very high selectivity of CO2/N2 of 25.67 was obtained on MEA(40)-β. Steric effect and chemical adsorbate-adsorbent interaction were responsible for such high adsorption selectivity of CO2. The present MEA-functionalized β-zeolite adsorbents may be a good candidate for applications in flue gas separation, as well as natural gas and landfill gas purifications.  相似文献   

17.
18.
Summary An ,-appended eighteen carbon chains hypercin derivative (2) was synthesized starting from emodin. The overall yield of the seven step synthesis was 12%. The1H and13C NMR, absorption, and emission spectroscopic properties were measured;2 can be dissolved even in apolar solvents and polyethylene.
Synthese und Eigenschaften eines mit C18-Ketten ,-substituierten Hypericinderivats
Zusammenfassung Ein in den Positionen , mit zwei C18-Ketten substituiertes Derivat des Hypericins (2) wurde ausgehend von Emodin synthetisiert. Die Gesamtausbeute der siebenstufigen Synthese betrug 12%. Die1H- und13C-NMR, absorptions- und emissionsspektroskopischen Eigenschaften wurden gemessen;2 kann sogar in apolaren Lösungsmitteln und Polyethylen gelöst werden.
  相似文献   

19.
The standard α(s)-data of N(2) at 87.3 K by graphitized and nongraphitized carbon black samples (GCB-I and NGCB) (cf.Figs. 3 and 4) have been determined on the basis of the high resolution adsorption isotherms of N(2) at 87.3 K, which were repeatedly measured in the pressure range of p/p(o)=5×10(-8)-0.4. The high resolution adsorption isotherms of N(2) by two kinds of activated carbon fibers (ACF-I and ACF-II) were measured from p/p(o)=10(-7) to p/p(o)=0.995 at 77.4 K and from p/p(o)=10(-7) to p/p(o)=0.4 at 87.3 K. Combination of the adsorption isotherms by ACF-I and ACF-II with the standard α(s)-data by NGCB at 77.4 K and 87.3 K make it possible to construct the high resolution α(s)-plots from very low filling (1%) to complete filling (100%). The high resolution α(s)-plots of N(2) at 77.4 K and 87.3 K were analyzed. On the basis of the analyzed result, the porous textures of ACF-I and ACF-II will be discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号