首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The dynamic interfacial tensions (IFTs) of enhanced oil recovery (EOR) surfactant/polymer systems against n-decane have been investigated using a spinning drop interfacial tensiometer in this paper. Two anionic–nonionic surfactants with different hydrophilic groups, C8PO6EO3S (6-3) and C8PO6EO6S (6-6), were selected as model surfactants. Partially hydrolyzed polyacrylamide (HPAM) and hydrophobically modified polyacrylamide (HMPAM) were employed. The influences of surfactant concentration, temperature, polymer concentration, and oleic acid in the oil on IFTs have been studied. The experimental results show that anionic–nonionic surfactants can form compact adsorption films and reach ultralow IFT (10?3 mN/m) under optimum conditions. The addition of polymer has great influence on dynamic IFTs between surfactant solutions and n-decane mainly by the formation of looser mixed films resulting from the penetration of polymer chains into the interface. The compact surfactant film will also be weakened by the competitive adsorption of oleic acid, which results in the increase of IFT. Moreover, the penetration of polymer chains will be further destroyed surfactant/polymer mixed layer and lead to the obvious increase of IFT. On the other hand, polymers show little effect on the IFTs of 6-6 systems than those of 6-3 because of the hindrance of longer EO chain of 6-6 at the interface.  相似文献   

2.
In our previous work (Macromolecules 2004, 37:2930), we found that the hydrophobic blocks of polyacrylamide modified with 2‐phenoxylethyl acrylate (POEA) and anionic surfactant sodium dodecyl sulfate (SDS) may form mixed associations at octane/water interface. However, the process involving the exchange of surfactant molecules between monomers and mixed associations in interface is so fast that we cannot obtain its characteristic time. In this article, the interfacial dilational viscoelastic properties of another hydrophobically associating block copolymer composed of acrylamide (AM) and a low amount of 2‐ethylhexyl acrylate (EHA) (<1.0 mol%) at the octane‐water interfaces were investigated by means of oscillating barriers method and interfacial tension relaxation method respectively. The influences of anionic surfactant SDS and nonionic surfactant Triton X‐100 on the dilational viscoelastic properties of 7000 ppm polymer solutions were studied. The results showed that the interaction between P(AM/2‐EHA) and SDS was similar to that of P(AM/POEA) and SDS. Moreover, we got the relaxation characteristic time of the fast process involving the exchange of s Triton X‐100 molecules between monomers and mixed associations.

We also found that the interfacial tension response of hydrophobically associating water‐soluble copolymers to the sinusoidal oscillation of interfacial area at low bulk concentration is as same as that of the typical surfactants: the interfacial tension decreases with the decrease of interfacial area because of the increase of interfacial active components. However, the interfacial tension increases with the decrease of interfacial area at 7000 ppm P(AM/2‐EHA), which is believed to be correlative with the structure of absorbed film. The results of another hydrophobically associating polymer P(AM/POEA) and polyelectrolyte polystyrene sulfonate (PSS) enhanced our supposition. The phase difference between area oscillation and tension oscillation has also been discussed considering the apparent negative value.  相似文献   

3.
There is a close correlation between the interfacial activity and the adsorption of the surfactant at the interface, but the detailed molecular standard information was scarce. The interfacial activity of two traditional anionic surfactants sodium dodecyl benzene sulfonate (SDBS) and sodium oleate (OAS) were studied by experimental and computer simulation methods. With the spinning drop method and the suspension drop method, the interfacial tension of oil/aqueous surfactant systems was measured, and the influence of surfactant concentration and salinity on the interfacial tension was investigated. The dissipative particle dynamics (DPD) method was used to simulate the adsorption of SDBS and OAS at the oil/water interface. It was shown that it is beneficial to decrease interfacial tension if the hydrophobic chains of the surfactant and the oil have similar structure. The accession of inorganic salts causes surfactant molecules to form more compact and ordered arrangements and helps to decrease the interfacial tension. There is an osculation relation between interfacial density and interfacial activity. The interfacial density calculated by molecular simulation is an effective parameter to exhibit the interfacial activity.  相似文献   

4.
The influence of hydrophobic chain length in nonionic surfactants on interfacial and thermodynamics properties of a binary anionic‐nonionic mixed surfactant was investigated. In this study, nonionic surfactants lauric‐monoethanolamide (C12 MEA) and myrisitic‐monoethanolamide (C14 MEA) were mixed with an anionic surfactant, α‐olefin sulfonate (AOS). The critical micelle concentration (cmc), maximum surface excess (Γmax), and minimum area per molecule (Amin) were obtained from surface tension isotherms at various temperatures. The thermodynamic parameters of micellization and adsorption were also computed. Micellar aggregation number (Nagg), micropolarity, and binding constant (Ksv) of pure and mixed surfactant system was calculated by fluorescence measurements. Rubingh's method was applied to calculate interaction parameters for the mixed surfactant systems.  相似文献   

5.
We studied the reciprocal influence of a nonionic surfactant (triton X-305) and a cationic surfactant (tetradecyltrimethylammonium bromide; TTAB) on their adsorption from aqueous solution on hydrophobic glass, interfacial tension at the solution/solid interface, composition of the mixed adsorption layer, and interaction parameters between surfactant molecules in mixed adsorption layers.  相似文献   

6.
In this article, the interfacial tension and interfacial dilational viscoelasticity of polystyrene sulfonate/surfactant adsorption films at the water–octane interface have been studied by spinning drop method and oscillating barriers method respectively. The experimental results show that different interfacial behaviors can be observed in different type of polyelectrolyte/surfactant systems. Polystyrene sulfonate sodium (PSS)/cationic surfactant hexadecanetrimethyl–ammonium bromide systems show the classical behavior of oppositely charged polyelectrolyte/surfactant systems and can be explained well by electrostatic interaction. In the case of PSS/anionic surfactant sodium dodecyl sulfate (SDS) systems, the coadsorption of PSS at interface through hydrophobic interaction with alkyl chain of SDS leads to the increase of interfacial tension and the decrease of dilational elasticity. For PSS/nonionic surfactant TX100 systems, PSS may form a sub-layer contiguous to the aqueous phase with partly hydrophobic polyoxyethylene chain of TX100, which has little effect on the TX100 adsorption film and interfacial tension.  相似文献   

7.
We investigated the interaction between an anionic polyelectrolyte (carboxymethylcellulose) and cationic surfactants (DTAB, TTAB, and CTAB) at the air/water interface, using surface tension, ellipsometry, and Brewster angle microscopy techniques. At low surfactant concentration, a synergistic phenomenon is observed due to the co-adsorption of polyelectrolyte/surfactant complexes at the interface, which decreases the surface tension. When the surfactant critical aggregation concentration (cac) is reached, the adsorption saturates and the thickness of the adsorbed monolayer remains constant until another characteristic surfactant concentration, C0, is reached, at which all the polymer charges are bound to surfactant in bulk. Above C0, the absorbed monolayer becomes much thicker, suggesting adsorption of bulk aggregates, which have become more hydrophobic due to charge neutralization.  相似文献   

8.
The micellization of anionic gemini surfactant, N,N'-ethylene(bis(sodium N-dodecanoyl-beta-alaninate)) (212), and its monomer, N-dodecanoyl-N-methyl alaninate (SDMA), and polyethoxylated nonionic surfactants, C(12)E(5) and C(12)E(8), has been studied tensiometrically in pure and mixed states in an aqueous solution of 0.1 M NaCl at pH 11 to determine physicochemical properties such as critical micellar concentration (cmc), surface tension at the cmc (gamma(cmc)), maximum surface excess (Gamma(max)) and minimum area per surfactant molecule at the air/water interface (A(min)). The theories of Rosen, Rubingh, Motomura, Maeda, and Nagarajan have been applied to investigate the interaction between those surfactants at the interface and in the micellar solution, the composition of the aggregates formed, the theoretical cmc in pure and mixed states, and the structural parameters as proposed by Tanford and Israelachvili. Various thermodynamic parameters (free energy of micellization and interfacial adsorption) have been calculated with the help of regular solution theory and the pseudophase model for micellization.  相似文献   

9.
Significant synergistic effects between sodium dodecylbenzene sulfonate (SDBS) and nonionic nonylphenol polyethylene oxyether, Triton X-100 (TX-100), at the oil/water interface have been investigated by experimental methods and computer simulation. The influences of surfactant concentration, salinity, and the ratio of the two surfactants on the interfacial tension were investigated by conventional interfacial tension methods. A dissipative particle dynamics (DPD) method was used to simulate the adsorption properties of SDBS and TX-100 at the oil/water interface. The experiment and simulation results indicate that ultralow (lower than 10(-3) mN m(-1)) interfacial tension can be obtained at high salinity and very low surfactant concentration. Different distributions of surfactants in the interface and the bulk solution corresponding to the change of salinity have been demonstrated by simulation. Also by computer simulation, we have observed that either SDBS or TX-100 is not distributed uniformly over the interface. Rather, the interfacial layer contains large cavities between SDBS clusters filled with TX-100 clusters. This inhomogeneous distribution helps to enhancing our understanding of the synergistic interaction of the different surfactants. The simulation conclusions are consistent with the experimental results.  相似文献   

10.
In this article, the effect of molecular weight on the interfacial tension and interfacial dilational viscoelasticity of polystyrene sulfonate/surfactant adsorption films at the water-octane interface have been studied by spinning drop method and oscillating barriers method respectively. The experimental results show that different interfacial behaviors can be observed in different type of polyelectrolyte/surfactant systems. PSS/cationic surfactant CTAB systems show the classical behavior of oppositely charged polyelectrolyte/surfactant systems and can be well explained by electrostatic interaction. Molecular weight of PSS plays a crucial role in the nature of adsorption film. The complex formed by CTAB and higher molecular weight PSS, which has larger dimension and stronger interaction, results in higher dilational modulus at lower surfactant bulk concentration. In the case of PSS/anionic surfactant SDS systems, the co-adsorption of PSS at interface through hydrophobic interaction with alkyl chain of SDS leads to the increase of interfacial tension and the decrease of dilational modulus at lower surfactant bulk concentration. For PSS/nonionic surfactant T × 100 systems, PSS may form a sublayer contiguous to the aqueous phase, which has little effect on interfacial tension but slightly decreases dilational modulus.  相似文献   

11.
The surface properties of mixed system containing gemini anionic surfactant 1,2,3,4-butanetetracarboxylic sodium, 2,3-didodecyl ester and partly hydrolyzed polyacrylamide were investigated by surface tension measurements and oscillating bubble methods. The influences of surfactant concentration, dilational frequency, temperature, pH, as well as salts on dilational modulus were explored. Meanwhile, the interfacial tension relaxation method was employed to obtain the characteristic time of surface relaxation process. The polymers play important roles in changing the interfacial properties especially at lower surfactant concentration. The possible mechanism of the polymer in changing the interfacial properties is proposed. Both the hydrophobic and electrostatic interaction among the surfactants and polymers dominate the surface properties of mixed system. These dynamic properties are of fundamental interest in understanding the structure of adsorption layers, dynamics of surfactant molecules, and their interaction with polymers at the surface.  相似文献   

12.
In the present study, we have performed molecular dynamics simulations to describe the microscopic behaviors of the anionic, nonionic, zwitterion, and gemini surfactants at oil/water interface. The abilities of reducing the interfacial tension and forming the stable interfacial film of the four surfactants have been investigated through evaluating interfacial thickness, interface formation energy and radial distribution function. The results show that the four kinds of surfactants can form in stable oil/water interface of monolayer, and the gemini surfactant can form the more stable monolayer. The results of the above three parameters demonstrate that the gemini surfactant has the best simulation effect in the four surfactants. From the calculated interfacial tension values, the gemini surfactant possess the more powerful ability of reducing the interfacial tension than others, so it is more suitable to be used as the surfactant for flooding. In addition, the effects of different electric field intensities on surfactants were calculated, through the radial distribution function of the hydrophilic group in the surfactant and the oxygen atom in the water. We have found that the adding of the periodic electric field can significantly affect the diffusion behavior of the molecules, and nonionic surfactant has stronger demulsification capability than others.  相似文献   

13.
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.  相似文献   

14.
疏水缔合共聚物与表面活性剂的界面相互作用   总被引:1,自引:0,他引:1  
采用界面张力弛豫法研究了疏水缔合聚合物聚丙烯酰胺/2-乙基己基丙烯酸酯[P(AM/2-EHA)]在正辛烷-水界面上的扩张粘弹性质, 考察了不同类型表面活性剂十二烷基硫酸钠(SDS)、聚环氧乙烯醚(Tx-100)和十六烷基三甲基溴化铵(CTAB)对其界面扩张性质的影响. 研究发现, 界面上的表面活性剂分子可以与聚合物的疏水嵌段形成类似混合胶束的聚集体, 表面活性剂分子与聚集体之间存在快速交换. 这种弛豫过程的特征时间远比分子在体相与界面间的扩散交换时短. 当界面面积增大时, 上述混合胶束中的表面活性剂分子能快速释放, 在界面层内原位快速消除界面张力梯度, 从而大大降低界面扩张弹性. 界面上的CTAB分子与聚合物链节上的负电中心通过较强的电荷吸引作用形成复合物. 当界面面积增大时, 上述混合胶束中的CTAB分子释放较慢, 界面张力梯度较大. 非离子表面活性剂Tx-100分子量较大, 扩散速率较慢, 它在界面上与聚集体间的交换比阴离子表面活性剂SDS慢, 其特征时间约为0.9 s.  相似文献   

15.
The interaction has been studied in aqueous solutions between a negatively charged conjugated polyelectrolyte poly{1,4-phenylene-[9,9-bis(4-phenoxybutylsulfonate)]fluorene-2,7-diyl} copolymer (PBS-PFP) and several cationic tetraalkylammonium surfactants with different structures (alkyl chain length, counterion, or double alkyl chain), with tetramethylammonium cations and with the anionic surfactant sodium dodecyl sulfate (SDS) by electronic absorption and emission spectroscopy and by conductivity measurements. The results are compared with those previously obtained on the interaction of the same polymer with the nonionic surfactant C12E5. The nature of the electrostatic or hydrophobic polymer-surfactant interactions leads to very different behavior. The polymer induces the aggregation with the cationic surfactants at concentrations well below the critical micelle concentration, while this is inhibited with the anionic SDS, as demonstrated from conductivity measurements. The interaction with cationic surfactants only shows a small dependence on alkyl chain length or counterion and is suggested to be dominated by electrostatic interactions. In contrast to previous studies with the nonionic C12E5, both the cationic and the anionic surfactants quench the PBS-PFP emission intensity, leading also to a decrease in the polymer emission lifetime. However, the interaction with these cationic surfactants leads to the appearance of a new emission band (approximately 525 nm), which may be due to energy hopping to defect sites due to the increase of PBS-PFP interchain interaction favored by charge neutralization of the anionic polymer by cationic surfactant and by hydrophobic interactions involving the surfactant alkyl chains, since the same green band is not observed by adding either tetramethylammonium hydroxide or chloride. This effect suggests that the cationic surfactants are changing the nature of PBS-PFP aggregates. The nature of the polymer and surfactant interactions can, thus, be used to control the spectroscopic and conductivity properties of the polymer, which may have implications in its applications.  相似文献   

16.
采用耗散颗粒动力学方法在介观层次上模拟了非离子表面活性剂Triton X-100 在油/水界面上的分布行为, 并把用于油/水二元体系界面张力的计算方法拓展到含表面活性剂的三元体系. 利用该方法可以得到与实验数值吻合的界面张力数据. 另外, 模拟结果直观展示了表面活性剂界面张力与界面密度的关系, 为表面活性剂复配增效理论提供了依据. 该模拟方法给出的微观信息可以为驱油体系配方筛选和表面活性剂有效应用提供指导.  相似文献   

17.
An ultralow interfacial tension (IFT) oil displacement agent, which was a surfactant combinational system (HCS) with good salt and heat resistance, was synthesized using amphoteric betaine (AMS)/anionic sulfonate (AKS)/nonionic alkyl amide (NIS). The interface tensiometer was used to test the IFT. The results showed that the oil–water IFT could be as low as 10?4 mN/m when the salinity is 10,000~50,000?mg/L, the concentration is 1~5?g/L, and the temperature is 40~80°C. The surfactant system has good emulsification stability. The displacement simulation experiments demonstrated that the increment of the recovery ratio can be up to 14.1%. The surfactant system could meet the demands of site operation.  相似文献   

18.
通过阴阳离子表面活性剂复配,在实际油水体系中获得了超低界面张力.通过在阴离子表面活性剂分子结构中加入乙氧基(EO)链段,以及采用阴阳离子加非离子型表面活性剂的三组分策略,有效解决了混合表面活性剂在水溶液中溶解度问题.进而研究了阳离子表面活性剂结构、非离子表面活性剂结构、三者组分配比、表面活性剂总浓度等因素对油水界面张力的影响,从而在胜利油田多个实际油水体系中获得了较大比例范围和较低浓度区域的油水超低界面张力,部分体系甚至达到了10-4 mN·m-1.由于阴阳离子表面活性剂间强烈的静电吸引作用,相关体系具有很好的抗吸附能力.经过石英砂48 h吸附后,体系仍然具有很好的超低界面张力.  相似文献   

19.
烷基苯磺酸盐在油水界面行为的介观模拟   总被引:2,自引:0,他引:2  
采用耗散颗粒动力学(DPD)方法在介观层次上模拟了表面活性剂烷基苯磺酸盐在油/水界面的排布行为, 考察了分子结构、浓度、盐度、油相等因素对表面活性剂界面密度和界面效率的影响, 并探讨了利用表面活性剂复配协同效应提高界面活性的理论机制. 分子模拟给出的分子水平的微观信息为强化采油技术中配方筛选和表面活性剂的有效应用提供指导.  相似文献   

20.
Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号