首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Here, we present a platelet‐facilitated photothermal tumor therapy (PLT‐PTT) strategy, in which PLTs act as carriers for targeted delivery of photothermal agents to tumor tissues and enhance the PTT effect. Gold nanorods (AuNRs) were first loaded into PLTs by electroporation and the resulting AuNR‐loaded PLTs (PLT‐AuNRs) inherited long blood circulation and cancer targeting characteristics from PLTs and good photothermal property from AuNRs. Using a gene‐knockout mouse model, we demonstrate that the administration of PLT‐AuNRs and localizing laser irradiation could effectively inhibit the growth of head and neck squamous cell carcinoma (HNSCC). In addition, we found that the PTT treatment augmented PLT‐AuNRs targeting to the tumor sites and in turn, improved the PTT effects in a feedback manner, demonstrating the unique self‐reinforcing characteristic of PLT‐PTT in cancer therapy.  相似文献   

2.
Enzymes have been used to direct the conversion of prodrugs in cancer therapy. However, non‐specific distribution of endogenous enzymes seriously hinders their bioapplications. Herein, we developed a near‐infrared‐triggered locoregional chemo‐photothermal therapy based on the exogenous enzyme delivery and remolded tumor mivroenvironment. The catalytic efficiency of enzymes was enhanced by the hyperthermia, and the therapeutic efficacy of photothermal therapy (PTT) was improved owing to the inhibition of heat shock protein 90 by chemotherapeutics. The locoregional chemo‐phototherapy achieved a one‐time successful cure in 4T1 tumor‐bearing mice model. Thus, a mutually reinforcing feedback loop between PTT and chemotherapy can be initiated by the irradiation, which holds a promising future in cancer therapy.  相似文献   

3.
Cancer‐associated inflammation induces tumor progression to the metastatic stage, thus indicating that a chemo‐anti‐inflammatory strategy is of interest for the management of aggressive cancers. The platinum(IV) prodrug Platin‐A was designed to release cisplatin and aspirin to ameliorate the nephrotoxicity and ototoxicity caused by cisplatin. Platin‐A exhibited anticancer and anti‐inflammatory properties which are better than a combination of cisplatin and aspirin. These findings highlight the advantages of combining anti‐inflammatory treatment with chemotherapy when both the drugs are delivered in the form of a single prodrug.  相似文献   

4.
Photothermal therapy (PTT) has shown significant potential for cancer therapy. However, developing nanomaterials (NMs)‐based photothermal agents (PTAs) with satisfactory photothermal conversion efficacy (PTCE) and biocompatibility remains a key challenge. Herein, a new generation of PTAs based on two‐dimensional (2D) antimonene quantum dots (AMQDs) was developed by a novel liquid exfoliation method. Surface modification of AMQDs with polyethylene glycol (PEG) significantly enhanced both biocompatibility and stability in physiological medium. The PEG‐coated AMQDs showed a PTCE of 45.5 %, which is higher than many other NMs‐based PTAs such as graphene, Au, MoS2, and black phosphorus (BP). The AMQDs‐based PTAs also exhibited a unique feature of NIR‐induced rapid degradability. Through both in vitro and in vivo studies, the PEG‐coated AMQDs demonstrated notable NIR‐induced tumor ablation ability. This work is expected to expand the utility of 2D antimonene (AM) to biomedical applications through the development of an entirely novel PTA platform.  相似文献   

5.
Although linker‐free Au nanoparticle superstructures (AuNPSTs) have demonstrated to have satisfactory photothermal conversion efficiency owing to their enhanced visible‐near‐infrared absorption caused by the interparticle coupling, they cannot be used directly for in vivo photothermal therapy (PTT) of cancer because of poor stability. To address this issue, we herein propose a polymer‐coating strategy, dressing AuNPST on a poly(dopamine) (PDA) coat, and successfully investigate the in vivo PTT effect of AuNPSTs. By employing Triton X‐100 as an emulsifier for the formation of AuNPSTs, dopamine was site‐specifically polymerized around each AuNPST by the interaction between ?OH of Triton X‐100 and ?NH2 of dopamine. As‐fabricated AuNPST/PDA has a sphere‐like shape with an average diameter of ~106 nm and the PDA shell is about 10 nm PDA thick. The AuNPST/PDA shows enhanced durability to heat, acid, and alkali compared with bare AuNPST. Also, under 808 nm laser irradiation, AuNPST/PDA shows photothermal conversion efficiency of ~33%, higher than bare AuNPST (~23%). Significantly, AuNPST/PDA can be used as in‐vitro and in‐vivo PTT agent and shows excellent therapeutic efficacy for tumor ablation thanks to its enhanced stability and biocompatibility, indicative of its potential practicability in clinical PTT.  相似文献   

6.
Nanoparticles for photothermal therapy: Real‐time temperature monitoring is critical to reduce the nonspecific damage during photothermal therapy (PTT); however, PTT agents that can emit temperature‐related signals are rare and limited to few inorganic nanoparticles. We herein synthesize a semiconducting polymer nanococktail (SPNCT) that can not only convert photo‐energy to heat but also emit temperature‐correlated luminescence after cessation of light excitation. Such an afterglow luminescence of the SPNCT detects tumors more sensitively than fluorescence as a result of the elimination of tissue autofluorescence, while its temperature‐dependent nature allows tumor temperature to be optically monitored under near‐infrared (NIR) laser irradiation. Thus, SPNCT represents the first organic optical nanosystem that enables optical‐imaging guided PTT without real‐time light excitation.  相似文献   

7.
Two‐dimensional (2D) nanomaterials are currently explored as novel photothermal agents because of their ultrathin structure, high specific surface area, and unique optoelectronic properties. In addition to single photothermal therapy (PTT), 2D nanomaterials have demonstrated significant potential in PTT‐based synergistic therapies. In this Minireview, we summarize the recent progress in 2D nanomaterials for enhanced photothermal cancer therapy over the last five years. Their unique optical properties, typical synthesis methods, and surface modification are also covered. Emphasis is placed on their PTT and PTT‐synergized chemotherapy, photodynamic therapy, and immunotherapy. The major challenges of 2D photothermal agents are addressed and the promising prospects are also presented.  相似文献   

8.
Graphene oxide‐wrapped gold nanorods (GO@AuNRs) offer efficient drug delivery as well as NIR laser photothermal therapy (PTT) in vitro and in vivo. However, no real‐time observation of drug release has been reported to better understand the synergy of chemotherapy and PTT. Herein, surface‐enhance Raman spectroscopy (SERS) is employed to guide chemo‐photothermal cancer therapy by a two‐step mechanism. In the presence of GO as an internal standard, SERS signals of DOX (doxorubicin) loaded onto GO@AuNRs are found to be pH‐responsive. Both DOX and GO show strong SERS signals before the DOX@GO@AuNRs are endocytic. However, when the DOX@GO@AuNRs enter acidic microenvironments such as endosomes and/or lysosomes, the DOX signals start decreasing while the GO signals remain the same. This plasmonic antenna could be used to identify the appropriate time to apply the PTT laser during chemo‐photothermal therapy.  相似文献   

9.
Photothermal therapy(PTT) induces thermoresistance through cellular heat shock response, which impairs the therapeutic efficacy of the PTT. To resolve this problem, we developed a photothermal theranostics(denoted as PMH), which integrated the photothermal conversion agent of PdMo bimetallene with histone deacetylase 6(HDAC6) selected inhibitor(ACY-1215), showing the synergistic antitumor effect both in vitro and in vivo. Mechanistically, under the photoacoustic imaging(PA) navigation, the relea...  相似文献   

10.
Gold nanorod (GNR)–photosensitizer (PS) complex was prepared using anionic PS (sodium salt of purpurin‐18) and cationic poly(allylamine hydrochloride) by layer‐by‐layer method, and was characterized by transmission electron microscopy, UV‐vis spectroscopy, and zeta potential. The GNR–PS complex is a promising agent for synergistic (photothermal and photodynamic) therapy (PTT/PDT), in which PTT generates heat as well as operates the PS release which maximize the following PDT activity. The combined dual therapy, PTT followed by PDT, exhibits a significantly higher photocytotoxicity result based on synergistic effect of hyperthermia from PTT as well as singlet oxygen photogeneration from PDT.  相似文献   

11.
Melanoma is a primary reason of death from skin cancer and associated with high lethality. Photothermal therapy (PTT) has been developed into a powerful cancer treatment technique in recent years. Here, we created a low‐cost and high‐performance PTT agent, Ag@TiO2 NPs, which possesses a high photothermal conversion efficiency of ≈65 % and strong near‐infrared (NIR) absorption about 808 nm. Ag NPs were synthesized using a two‐step method and coated with TiO2 to obtain Ag@TiO2 NPs by a facile sol‐gel method. Because of the oxide, Ag@TiO2 NPs exhibit remarkable high photothermal conversion efficiencies and biocompatibility in vivo and in vitro. Cytotoxicity and therapeutic efficiency of photothermal cytotoxicity of Ag@TiO2 NPs were tested in B16‐F10 cells and C57BL/6J mice. Under light irradiation, the elevated temperature causes cell death in Ag NPs‐treated (100 μg mL?1) cells in vitro (both p<0.01). In the case of subcutaneous melanoma tumor model, Ag@TiO2 NPs (100 μg mL?1) were injected into the tumor and irradiated with a 808 nm laser of 2 W cm?2 for 1 minute. As a consequence, the tumor volume gradually decreased by NIR laser irradiation with only a single treatment. The results demonstrate that Ag@TiO2 NPs are biocompatible and an attractive photothermal agent for cutaneous melanoma by local delivery.  相似文献   

12.
Intrinsically integrating precise diagnosis, effective therapy, and self‐anti‐inflammatory action into a single nanoparticle is attractive for tumor treatment and future clinical application, but still remains a great challenge. In this study, bovine serum albumin–iridium oxide nanoparticles (BSA‐IrO2 NPs) with extraordinary photothermal conversion efficiency, good photocatalytic activity, and a high X‐ray absorption coefficient were prepared through one‐step biomineralization. The nanoparticles allow tumor phototherapy and simultaneous photoacoustic/thermal imaging and computed tomography. More importantly, BSA‐IrO2 NPs can also act as a catalase to protect normal cells against H2O2‐induced reactive oxygen pressure and inflammation while significantly enhancing photoacoustic imaging through microbubble‐based inertial cavitation. These remarkable features may open up the exploration iridium‐based nanomaterials in theranostics.  相似文献   

13.
The metabolic reprogramming of tumors requires high levels of adenosine triphosphate (ATP) to maintain therapeutic resistance, posing a major challenge for photothermal therapy (PTT). Although raising the temperature helps in tumor ablation, it frequently leads to severe side effects. Therefore, improving the therapeutic response and promoting healing are critical considerations in the development of PTT. Here, we proposed a gas-mediated energy remodeling strategy to improve mild PTT efficacy while minimizing side effects. In the proof-of-concept study, a Food and Drug Administration (FDA)-approved drug-based hydrogen sulfide (H2S) donor was developed to provide a sustained supply of H2S to tumor sites, serving as an adjuvant to PTT. This approach proved to be highly effective in disrupting the mitochondrial respiratory chain, inhibiting ATP generation, and reducing the overexpression of heat shock protein 90 (HSP90), which ultimately amplified the therapeutic outcome. With the ability to reverse tumor thermotolerance, this strategy delivered a greatly potent antitumor response, achieving complete tumor ablation in a single treatment while minimizing harm to healthy tissues. Thus, it holds great promise to be a universal solution for overcoming the limitations of PTT and may serve as a valuable paradigm for the future clinical translation of photothermal nanoagents.  相似文献   

14.
Long‐term use of nonsteroidal anti‐inflammatory drugs (NSAIDs) for relieving inflammatory reactions can lead to severe side effects. It is of great importance to configure new dosing strategies for alleviating the side effects of NSAIDs. In this work, an enzyme‐responsive anti‐inflammatory prodrug capable of generating indomethacin upon the trigger of inflammation is developed. A monomer is first prepared after the esterification of carboxyl groups of indomethacin by hydroxyl groups of N‐(2‐hydroxyethyl) acrylamide. Then, a polymer prodrug, with indomethacin linked through ester bonds on the side chain, is synthesized by free radical polymerization of the monomer. The therapeutic drug component can be triggered to release from the prodrug under the stimulation of cholesterol esterase, mimicking the inflammation environment. On the contrary, there is only a small amount of drug released in the absence of the enzyme. Therefore, the drug can be triggered to release under the stimulation of an environment mimicking inflammation. Furthermore, the in vitro studies at the cellular level indicate that the enzyme‐responsive prodrug can efficiently relieve inflammatory responses induced by lipopolysaccharide in RAW264.7 macrophage cells while indicating no cytotoxicity.  相似文献   

15.
Hypoxia, as a characteristic feature of solid tumor, can significantly adversely affect the outcomes of cancer radiotherapy (RT), photodynamic therapy, or chemotherapy. In this study, a strategy is developed to overcome tumor hypoxia‐induced radiotherapy tolerance. Specifically, a novel two‐dimensional Pd@Au bimetallic core–shell nanostructure (TPAN) was employed for the sustainable and robust production of O2 in long‐term via the catalysis of endogenous H2O2. Notably, the catalytic activity of TPAN could be enhanced via surface plasmon resonance (SPR) effect triggered by NIR‐II laser irradiation, to enhance the O2 production and thereby relieve tumor hypoxia. Thus, TPAN could enhance radiotherapy outcomes by three aspects: 1) NIR‐II laser triggered SPR enhanced the catalysis of TPAN to produce O2 for relieving tumor hypoxia; 2) high‐Z element effect arising from Au and Pd to capture X‐ray energy within the tumor; and 3) TPAN affording X‐ray, photoacoustic, and NIR‐II laser derived photothermal imaging, for precisely guiding cancer therapy, so as to reduce the side effects from irradiation.  相似文献   

16.
Nanocarrier‐based cancer therapy suffers from poor tumor penetration and unsatisfied therapeutical efficacy, as its vascular extravasation efficiency is often compromised by the intrinsic physiological heterogeneity in tumor tissues. In this work, novel near infrared (NIR)‐responsive CuS‐loaded nanogels are prepared to deliver anticarcinogen into the tumor. These hybrid polymeric nanogels possess high photothermal conversion efficiency, and are able to load a large amount of antitumor drug (e.g., doxorubicin [DOX]). More importantly, the thermal heat could induce self‐destruction of the big‐size framework of hybrid nanogels into small nanoparticles, which greatly facilitates tumor penetration to release DOX deep inside the tumor, as validated by photoacoustic (PA) imaging which exhibits 26.3 times enhancement at the interior region compared to signals of groups without laser irradiation. Such structural alteration, combined with strong photothermal and chemotherapy effects, leads to remarkable inhibition of tumor growth in mice. As a result, this NIR‐induced disintegration of CuS‐loaded nanogels provides a novel drug delivery strategy and might open a new window for clinical cancer treatment.  相似文献   

17.
In this work, dual‐mode antibacterial conjugated polymer nanoparticles (DMCPNs) combined with photothermal therapy (PTT) and photodynamic therapy (PDT) are designed and explored for efficient killing of ampicillin‐resistant Escherichia coli (Ampr E. coli). The DMCPNs are self‐assembled into nanoparticles with a size of 50.4 ± 0.6 nm by co‐precipitation method using the photothermal agent poly(diketopyrrolopyrrole‐thienothiophene) (PDPPTT) and the photosensitizer poly[2‐methoxy‐5‐((2‐ethylhexyl)oxy)‐p‐phenylenevinylene] (MEH‐PPV) in the presence of poly(styrene‐co‐maleic anhydride) which makes nanoparticles disperse well in water via hydrophobic interactions. Thus, DMCPNs simultaneously possess photothermal effect and the ability of sensitizing oxygen in the surrounding to generate reactive oxygen species upon the illumination of light, which could easily damage resistant bacteria. Under combined irradiation of near‐infrared light (550 mW cm?2, 5 min) and white light (65 mW cm?2, 5 min), DMCPNs with a concentration of 9.6 × 10?4 µm could reach a 93% inhibition rate against Ampr E. coli, which is higher than the efficiency treated by PTT or PDT alone. The dual‐mode nanoparticles provide potential for treating pathogenic infections induced by resistant microorganisms in clinic.  相似文献   

18.
Bilirubin (BR), a bile pigment that exerts potent antioxidant and anti‐inflammatory effects, is also a major constituent of black pigment gallstones found in bile ducts under certain pathological conditions. Inspired by the intrinsic metal‐chelating power of BR found in gallstones, herein we report a cisplatin‐chelated BR‐based nanoparticle (cisPt@BRNP) for use as a new photonic nanomedicine for combined photoacoustic imaging and photothermal therapy of cancers. The cisPt@BRNPs were prepared by simply mixing cisplatin with BRNPs, yielding ca. 150‐nm‐size NPs. Upon near‐IR laser irradiation at 808 nm, cisPt@BRNPs generated considerable heat and induced clear death of cancer cells in vitro. Following intravenous injection into human colon cancer‐bearing mice, cisPt@BRNPs allowed effective tumor visualization by photoacoustic imaging and remarkable antitumor efficacy by photothermal therapy, suggesting their potential for use as a new photonic nanomedicine for cancer therapy.  相似文献   

19.
The two‐dimensional (2D) vanadium carbide (V2C) MXene has shown great potential as a photothermal agent (PTA) for photothermal therapy (PTT). However, the use of V2C in PTT is limited by the harsh synthesis condition and low photothermal conversion efficiency (PTCE). Herein, we report a completely different green delamination method using algae extraction to intercalate and delaminate V2AlC to produce mass V2C nanosheets (NSs) with a high yield (90 %). The resulting V2C NSs demonstrated good structural integrity and remarkably high absorption in near infrared (NIR) region with a PTCE as high as 48 %. Systemic in vitro and in vivo studies demonstrate that the V2C NSs can serve as efficient PTA for photoacoustic (PA) and magnetic resonance imaging (MRI)‐guided PTT of cancer. This work provides a cost‐effective, environment‐friendly, and high‐yielding disassembly approach of MAX, opening a new avenue to develop MXenes with desirable properties for a myriad of applications.  相似文献   

20.
Carbon dots (CDs), a kind of phototheranostic agent with the capability of simultaneous bioimaging and phototherapy [i.e., photodynamic therapy (PDT) or photothermal therapy (PTT)], have received considerable attention because of their remarkable properties, including flexibility for surface modification, high biocompatibility, low toxicity and photo‐induced activity for malignant tumor cells. Among numerous carbon sources, it has been found that natural biomass are good candidates for the preparation of CD phototheranostic agents. In this study, pheophytin, a type of Mg‐free chlorophyll derivative and also a natural product with low toxicity, was used as a raw carbon source for the synthesis of CDs by using a microwave method. The obtained hydrophobic CDs exhibited a maximum near‐infrared (NIR) emission peak at approximately 680 nm, and high singlet oxygen (1O2) generation with a quantum yield of 0.62. The self‐assembled CDs from the as‐prepared CDs with DSPE‐mPEG2000 retained efficient 1O2 generation. The obtained carbon dot assembly was not only an efficient fluorescence (FL) imaging agent but also a smart PDT agent. Our studies indicated that the obtained hydrophilic CD assembly holds great potential as a new phototheranostic agent for cancer therapy. This work provides a new route for synthesis of CDs and proposes a readily available candidate for tumor treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号