首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equal ratios of medium chainlength triglycerides and water were emulsified with 5% w/w of mixed nonionic surfactants with various hydrophilic-lipophilic balance (HLB) values. The HLB numbers ranged from 15 to 6.6. Emulsifiers with HLB numbers 15, 14.2, 13.3, and 12.5 produced low viscosity milk-like liquid, 11.6, 10.8, 10, and 9.1 produced cream, 8.3 and 7.4 produced paste like consistency, and 6.6 produced a coarse emulsion. The effects of HLB on stability, particle size, and rheological properties were studied. Emulsifiers with intermediate HLB numbers produced emulsions that are stable for 30 days at room temperature but a thin layer of oil on top of the emulsion was observed at 45°C. The thin oil layer can be redispersed with mild agitation without loss of stability. Emulsifiers with high and low HLB number (15, 14.2, 13.3, 6.6) produced emulsions that were unstable at both storage conditions. The stability of the emulsions correlate well with the particle size. The curve flow plot for most of the emulsions fit the Herschel Bulkley model. They exhibit a pseudoplastic type behavior. Emulsifiers with different HLB numbers also affect the shear stress at zero shear, τ0, and the yield value, τ.  相似文献   

2.
Carotene compounds are a group of natural pigments with potential applications in the food industry for their antioxidant activity, but due to their physicochemical instability and incompatibility with many food matrices, different technologies have been employed, such as emulsification, to improve stability and compatibility. Therefore, the physicochemical stability and antioxidant activity of carotene oil-in-water (O/W) emulsions were studied, using carotene compounds extracted from carrot as the oil phase and blackberry juice as the continuous phase. The effect of different factors on the stability of the emulsion – the relative concentration of the dispersed phase, the hydrophilic-lipophilic balance (HLB), the surfactant concentration, and the emulsification method – was assessed using surface response analysis. The emulsion with the best properties was obtained in the phase ratio 2:8 (v/v) with 6% surfactant and an HLB of 16.7. The ultrasound method produced emulsions with higher antioxidant stability and lower carotene degradation rates than those prepared by high pressure, when compared after 60 days of storage at 25°C. This study allowed the development of a stable emulsion with antioxidants in each of the phases of the emulsion that could be incorporated into several types of food products to produce functional foods.  相似文献   

3.
The two dominant factors that were found to affect the stability of multiple emulsions in high HLB surfactant systems are the osmotic pressure imbalance between the internal aqueous phase and the external aqueous phase, and the adsorption/desorption characteristics of the emulsifier/surfactant film at the oil/water interface. Synergistic interaction between the low HLB emulsifier and the high HLB surfactant that produces very low interfacial tension of the order of 10(-2) mN/m at the oil/water interface was found to occur in some of the systems investigated. Long term stability was observed in multiple emulsion containing these systems. However, no synergy was observed in systems in which either the oil or the emulsifier, or both, contained unsaturated chains. In fact, desorption of the adsorbed surfactant film was observed in systems containing unsaturated chains. The observed desorption from the interface of the emulsifier in these systems was attributed mainly to the inability of the unsaturated chains to form a close packed, condensed interfacial film. Presence of closely packed, condensed interfacial film is necessary to prevent solubilization of the adsorbed low HLB emulsifier by the high HLB surfactant. Multiple emulsions prepared using systems containing unsaturated hydrocarbons were highly unstable.  相似文献   

4.
The stability of four components emulsions - oil, water, surfactant and cosurfactant - is examined. From a series of stable formulations, prepared with one surfactant family, the correlations between different characteristic parameters - solubility parameters of the oil and of the cosurfactant, surfactant HLB, required HLB of the oil - are checked. The experimental study displays linear relations between some of these parameters. The results allow to predict that the choice of the oil induces the choice of an HLB range for the surfactant and a solubility parameter range for the cosurfactant.  相似文献   

5.
Six oil soluble nonionic surfactants with different HLBs have been prepared. Their HLBs situate between 3.9 and 6.7. Transesterification was carried out for glycerol and triethanol amine with oleic acid at different moles to obtain six emusilifiers. They named glycerol momooleate (I), glycerol diooleate (II), glycerol trioleate (III), triethanol amine mono-, di- and tri-oleate (IV), (V,) and (VI). The chemical structure was confirmed using; the elemental analysis, FTIR and 1HNMR. They were evaluated as a primary emulsifiers (PE) for thdrilling fluids (oil base mud) comparing with a currently used primary emulsifier (Fc). The water in oil base mud (w/o emulsions) was prepared. The concentration of emulsifiers and their HLB exhibited interesting rheology properties including shear-thinning behavior, yield value, viscoelastic effects, thixtropy, gel strength, and filtration loss. The rheology properties of such emulsions strongly depended on the average size distribution of the dispersed droplets that could be varied both with the bulk concentration and HLB value of the emulsifiers. The interfacial and surface properties of these emulsifiers suggest that the droplet size of the dispersed phase and bulk concentration are strongly related to the HLB value of emulsifiers. The w/o emulsion (mud formulation) stability is sensitive to the droplet size of the dispersed phase and HLB value of the used emulsifier. The results were discussed on the light the chemical structure of the primary emulsifiers and the emulsion ingredients.  相似文献   

6.
A three-step model of the transitional phase inversion (TPI) process for the formation of water-in-oil (W/O) emulsions is presented. Three types of emulsions exist in an emulsification process at different oil–water ratios and hydrophilic–lipophilic balance (HLB). A stable W/O emulsion was obtained using Sorbitan oleate (Span 80) and polyoxyethylenesorbitan monooleate (Tween 80) with a specified HLB and oil volume fraction. Oil was added into water, which contained the water-soluble surfactant, to dissolve the oil-soluble surfactant. This route allowed TPI to occur, and an interesting emulsification process was observed by varying the HLB, which corresponded to the change in the oil–water ratio. Two types of emulsions in the emulsification process were found: transition emulsion 1 (W/O/W high internal phase emulsion) and target emulsion 2 (W/O emulsion with low viscosity). This study describes the changes that occurred in the emulsification process.  相似文献   

7.
以丙烯酸(AA)单体的水溶液为水相,液体石蜡为油相,失水山梨醇三油酸酯(Span 85)和辛基苯基聚氧乙烯醚(Opan 10)为复合乳化剂,合成了淀粉/丙烯酸反相乳液;考察了乳化剂亲水亲油平衡值(HLB值)、油水比、乳化剂用量、单体浓度、温度对乳液稳定性和类型的影响.结果表明,合成淀粉/丙烯酸稳定反相乳液体系的适宜条件...  相似文献   

8.
Emulsions containing vegetable oils and anisotropic phases have especially attractive properties in pharmaceutical technology. They are use as vehicle for different kind of drugs, especially those of topical application. Apart from that, many vegetable oil have pharmacological activity, increasing the necessity for the development of new delivery systems for them. We developed emulsions with vegetable oils at a fixed surfactant ratio and observed the formation of liquid crystalline phases. Nine vegetable oils: Andiroba, Apricot, Avocado, Brazil Nut, Buriti, Cupuassu, Marigold, Passion Fruit and Pequi and mineral oil were tested. Surfactant system was consisted by Steareth-2 and Ceteareth-5. Emulsions were prepared by the emulsion phase inversion (EPI) method, presenting high stability independent on the HLB value. Results indicate that this method could be employed to attain stable emulsions, even if the required HLB value is not known.  相似文献   

9.
Formulation optimization of emulsifiers for preparing multiple emulsions was performed in respect of stability by using artificial neural network (ANN) technique. Stability of multiple emulsions was expressed by the percentage of reserved emulsion volume of freshly prepared sample after centrifugation. Individual properties of multiple emulsions such as droplet size, δ, viscosity of the primary and the multiple emulsions were also considered. A back‐propagation (BP) network was well trained with experimental data pairs and then used as an interpolating function to estimate the stability of emulsions of different formulations. It is found that using mixtures of Span 80 and Tween 80 with different mass ratio as both lipophilic and hydrophilic emulsifiers, multiple W/O/W emulsions can be prepared and the stability is sensitive to the mixed HLB numbers and concentration of the emulsifiers. By feeding ANN with 39 pairs of experimental data, the ANN is well trained and can predict the influences of several formulation variables to the immediate emulsions stability. The validation examination indicated that the immediate stability of the emulsions predicted by the ANN is in good agreement with measured values. ANN therefore could be a powerful tool for rapid screening emulsifier formulation. However, the long‐term stability of the emulsions is not good, possibly due to the variation of the HLB number of the mixed monolayers by diffusion of emulsifier molecules, but can be greatly improved by using a polymer surfactant Arlacel P135 to replace the lipophilic emulsifier.  相似文献   

10.
Sunflower oil and sesame oil contain fairly high percentage of tocopherols and tocotrienols. These oils were emulsified by using a combination of non‐ionic surface‐active agents viz. Span‐80 and Tween‐20 surfactants to get cosmetic emulsions. Stability of the emulsions was enhanced by using natural polymer additives. The effect of various parameters such as pH, oil content, emulsifier content, HLB of blend of emulsifier concentration of additives and temperature on the stability of cosmetic emulsion was studied. These emulsions are “skin compatible” being stable at neutral pH. Xanthan gum was found to be the most effective additive as compared to the other natural polymers. The emulsions showed a “pseudoplastic” flow behavior.  相似文献   

11.
Thyme species are used in traditional medicine throughout the world and are known for their antiseptic, antispasmodic, and antitussive properties. Also, antioxidant activity is one of the interesting properties of thyme essential oil. In this research, we aim to identify peaks potentially responsible for the antioxidant activity of thyme oil from chromatographic fingerprints. Therefore, the chemical compositions of hydrodistilled essential oil of thyme species from different regions were analyzed by gas chromatography with mass spectrometry and antioxidant activities of essential oils were measured by a 1,1‐diphenyl‐2‐picrylhydrazyl radical scavenging test. Several linear multivariate calibration techniques with different preprocessing methods were applied to the chromatograms of thyme essential oils to indicate the peaks responsible for the antioxidant activity. These techniques were applied on data both before and after alignment of chromatograms with correlation optimized warping. In this study, orthogonal projection to latent structures model was found to be a good technique to indicate the potential antioxidant active compounds in the thyme oil due to its simplicity and repeatability.  相似文献   

12.
阿维菌素水乳剂的稳定性   总被引:9,自引:0,他引:9  
首先将辛基酚聚氧乙烯醚(OP10)、苯乙烯基酚聚氧乙烯醚(602)和蓖麻油聚氧乙烯(40)醚(EL-40)分别与蓖麻油聚氧乙烯(20)醚(EL-20)复配制备阿维菌素水乳剂,从亲水亲油平衡(HLB)值、临界胶束浓度(cmc)、表面张力等方面分析了二元表面活性剂复配对乳液稳定性的影响;其次,在EL-40与EL-20复配基础上,将苯乙烯基酚聚氧乙烯聚氧丙烯醚(1601),嵌段共聚物(L64)和辛基酚聚氧乙烯醚磷酸酯(A)分别添加到乳液中,从粒径、表面张力和zeta电势等方面考察三元表面活性剂复配对乳液稳定性的影响.结果表明:EL-40与EL-20复配具有较低的表面张力,可制备较稳定的乳液.添加1601和L64对乳液稳定性有一定提高;而添加A大大提高了乳液的稳定性,这是由于A显著降低了液滴粒径和表面张力,增加了zeta电势.  相似文献   

13.
This article reports on the oil in water (o/w) nanoemulsions, which were prepared using a mixture of solvents (decane, toluene and cyclohexane) as oils and the mixtures of ethoxylated lauryl alcohols with various concentrations as surfactants with HLB values ranged from 10 to 12. The Ultra-Turrax (rotor-stator type) stirring and/or ultrasound processing were applied for varied processing times. The data show that the particle sizes in nanoemulsions prepared with ultrasound were smaller than those produced by stirring. The stability of these emulsions was, however, enhanced, when the mixtures were preliminary processed with the shearing agitator. The most stable nanoemulsions were obtained in 10 wt % surfactant mixture of the alcohols with HLB 11 in the shearing agitator.  相似文献   

14.
To find an optimal formulation of oil-in-water (O/W) emulsions (φo = 0.05), the effect of emulsifier nature and concentration, agitation speed, emulsifying time, storage temperature and their mutual interactions on the properties and behavior of these dispersions is evaluated by means of an experimental design (Nemrodw software). Long-term emulsion stability is monitored by multiple light scattering (Turbiscan ags) and acoustic attenuation spectroscopy (Ultrasizer). After matching surfactant HLB and oil required HLB, a model giving the Sauter diameter as a function of emulsifier concentration, agitation speed and emulsification time is proposed. The highest stability of C12E4-stabilized O/W emulsions is observed with 1% emulsifier.  相似文献   

15.
The ternary phase diagram for N-[3-lauryloxy-2-hydroxypropyl]-L-arginine L-glutamate (C12HEA-Glu), a new amino acid-type surfactant, /oleic acid (OA)/water system was established. The liquid crystal and gel complex formations between C12HEA-Glu and OA were applied to a preparation of water-in-oil (W/O) emulsions. Stable W/O emulsions containing liquid paraffin (LP) as the oil and a mixture of C12HEA-Glu and OA as the emulsifier were formed. The preparation of stable W/O emulsions containing 85 wt% water phase was also possible, in which water droplets would be polygonally transformed and closely packed, since the maximum percentage of inner phase is 74% assuming uniformly spherical droplets. Water droplets would be taken into the liquid crystalline phase (or the gel complex) and the immovable water droplets would stabilize the W/O emulsion system. The viscosity of emulsions abruptly increased above the 75 wt% water phase (dispersed phase). The stability of W/O emulsions with a lower weight ratio of OA to C12HEA-Glu and a higher ratio of water phase was greater. This unusual phenomenon may be related to the formation of a liquid crystalline phase between C12HEA-Glu and OA, and the stability of the liquid crystal at a lower ratio of oil (continuous phase). W/O and oil-in-water (O/W) emulsions containing LP were selectively prepared using a mixture of C12HEA-Glu and OA since the desirable hydrophile-lipophile balance (HLB) number for the emulsification was obtainable by mixing the two emulsifiers.  相似文献   

16.
The stability and droplet size of protein and lipid stabilised emulsions of caraway essential oil as well as the amount of protein on the emulsion droplets have been investigated. The amount of added protein (beta-lactoglobulin) and lipid (phosphatidylcholine from soybean (sb-PC)) were varied and the results compared with those obtained with emulsions of a purified olive oil. In general, emulsions with triglyceride oil proved to be more stable compared with those made with caraway essential oil as the dispersed phase. However, the stability of the emulsions can be improved considerably by adding sb-PC. An increase in the protein concentration also promoted emulsion stability. We will also present how ellipsometry can be used to study the adsorption of the lipid from the oil and the protein from the aqueous phase at the oil-water interface. Independently of the used concentration, close to monolayer coverage of sb-PC was observed at the caraway oil-aqueous interface. On the other hand, at the olive oil-aqueous interface, the presence of only a small amount of sb-PC lead to an exponential increase of the layer thickness with time beyond monolayer coverage. The amounts of beta-lactoglobulin adsorbed at the caraway oil-aqueous interface and at the olive oil-aqueous interface were similar, corresponding roughly to a protein monolayer coverage.  相似文献   

17.
Water‐in‐oil (w/o) emulsions were prepared with phosphatidylcholine‐depleted lecithin or polyglycerol polyricinoleate (PGPR) as emulsifying agents. The effect of different laboratory emulsification devices and the effect of sodium chloride on particle size distribution, coalescence stability, and water droplet sedimentation were investigated. The properties of lecithin‐stabilized w/o emulsions were found to depend more strongly on the emulsifying method than those prepared with PGPR. The rotor‐stator system was not suitable for preparing stable w/o emulsions with lecithin. Whereas the addition of salt was essential to achieve coalescence‐stable emulsions prepared with PGPR, the presence of NaCl favored the coalescence of water droplets and phase separation in emulsions containing lecithin.  相似文献   

18.
Factors that affect the phase-inversion temperature (PIT) based on nonionic surfactant fatty alcohol ethoxylates were investigated. Phase-inversion process was continuously monitored by determining changes in conductivity with temperature. The influences of oil-to-water ratio, emulsifier concentration, emulsifier mixing ratio, sodium chloride, and oil types on the PIT of emulsions were investigated. Results showed that the PIT of the emulsions declined with increased oil-to-water ratio. Emulsifier concentration significantly affected the PIT temperature. High sodium chloride content suppressed phase inversion. A lower Brij72-to-Brij721 ratio corresponded to higher PIT. Different oils required different HLB numbers in the phase-inversion process.  相似文献   

19.
The objectives of this study were to examine the influence interfacial composition on environmental stresses stability of oil in water emulsions. An electrostatic layer-by-layer deposition method was used to create the multilayered interfacial membranes with different compositions: (i) primary emulsion (Soy protein Isolate); (ii) secondary emulsion (Soy protein Isolate – OSA-starch); (iii) tertiary emulsion (Soy protein isolate – OSA-starch – chitosan). Fourier transform-infrared (FTIR) and scanning electron microscopy (SEM) results confirmed the adsorption of charged polyelectrolyte onto oppositely charge polyelectrolyte-coated oil droplets. The stability of primary, secondary, and tertiary emulsions to thermal treatment (30 min at 30–90°C), pH (3–7) and NaCl (0–500 mM) were determined using ζ-potential, particle diameter, and microstructure analysis. Primary emulsions were unstable at pH 4–7, salt concentrations, and thermal treatments. Secondary emulsions were stable to creaming and droplet aggregation at pH 3–5, at ≤50 mM NaCl, and unstable at thermal treatments, whereas tertiary emulsions were stable at all salt concentrations, thermal treatments, and at pH 3–6. These results demonstrate that these polymers can be used to engineer oil in water emulsion systems and improve the emulsion stability to environmental stresses.  相似文献   

20.
The stability and droplet size of protein and lipid stabilised emulsions of caraway essential oil as well as the amount of protein on the emulsion droplets have been investigated. The amount of added protein (β-lactoglobulin) and lipid (phosphatidylcholine from soybean (sb-PC)) were varied and the results compared with those obtained with emulsions of a purified olive oil. In general, emulsions with triglyceride oil proved to be more stable compared with those made with caraway essential oil as the dispersed phase. However, the stability of the emulsions can be improved considerably by adding sb-PC. An increase in the protein concentration also promoted emulsion stability. We will also present how ellipsometry can be used to study the adsorption of the lipid from the oil and the protein from the aqueous phase at the oil–water interface. Independently of the used concentration, close to monolayer coverage of sb-PC was observed at the caraway oil–aqueous interface. On the other hand, at the olive oil–aqueous interface, the presence of only a small amount of sb-PC lead to an exponential increase of the layer thickness with time beyond monolayer coverage. The amounts of β-lactoglobulin adsorbed at the caraway oil–aqueous interface and at the olive oil–aqueous interface were similar, corresponding roughly to a protein monolayer coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号