首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diorganotin (IV) complexes SnR2X2 (R = Me, Ph; X = Cl, NCS) form a series of versatile complexes when react with bidentate substituted pyridyl ligands. The reaction of dimethyltin dichloride with 5,5′‐dimethyl‐2,2′‐bipyridine (5,5′‐Me2bpy) resulted in the formation of [SnMe2Cl2(5,5′‐Me2bpy)] ( 1 ). Moreover, the reaction of SnMe2(NSC)2 with 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (bu2bpy), 1,10‐phenanthroline (phen) and 4,7‐diphenyl‐1,10‐phenanthroline (bphen) affords the hexa‐coordinated complexes [SnMe2(NCS)2(bu2bpy)] ( 2 ), [SnMe2(NCS)2(phen)] ( 3 ) and [SnMe2(NCS)2(bphen)] ( 4 ), respectively. The resulting complexes have been characterized using elemental analysis, IR, multinuclear NMR (1H, 13C, 119Sn) and DEPT‐135° NMR spectroscopy. On the other hand, the reaction of diphenyltin dichloride with 2,2′‐biquinoline (biq) and 4,7‐phenantroline (4,7‐phen) led to the formation of polymeric complexes of [SnPh2Cl2(4,7‐phen)]n ( 5 ) and [SnPh2Cl2(biq)]n ( 6 ). The NMR spectra, however, reveal the ligand lability in solution and suggest a coordination number of 5 . The X‐ray crystal structures of complexes [SnMe2Cl2(5,5′‐Me2bpy)] ( 1 ), [SnMe2(NCS)2(bu2bpy)] ( 2 ) and [SnMe2(NCS)2(bphen)] ( 4 ) have been determined which reveal that the geometry around the tin atom is distorted octahedral with trans‐[SnMe2] configuration. Interestingly, the crystal structure of (H2biq)2[SnPh2Cl4]?2CHCl3 ( 7 ) was characterized by X‐ray crystallography from a chloroform solution of [SnPh2Cl2(biq)]n ( 6 ) indicating the formation of doubly protonated [H2biq]+ and [Ph2SnCl4]2? which are stabilized by a network of hydrogen bonds with a feature of trans‐[SnPh2]. The 3D Hirshfeld surface analysis and 2D fingerprint maps were used for quantitative mapping out of the intermolecular interactions for 1 , 2 , 4 and 7 which show the presence of π‐π and hydrogen bonding interactions which are associated between donor and acceptor atoms (N, S, Cl) in the solid state.  相似文献   

2.
The interaction of dimethyl- and diethyltin(IV) cations with methylpyridoxine iodide ([MePN]I; PN = pyridoxine) was studied in ethanol/water (80:20(v/v) containing Cl, NO3 or I ions in different molar ratios. Several compounds containing the deprotonated (MePN-H) or neutral (MePN) ligand were isolated and characterized by elemental analysis, IR and NMR (1H, 13C, 119Sn) spectroscopy and FAB mass spectrometry. The compounds [SnMe2(MePN-H)](I3), [SnEt2(MePN-H)](I3), [SnMe2(MePN-H)(NO3)], [SnEt2(MePN-H)(NO3)] and [SnMe2(MePN)2]I2 were studied by X-ray diffractometry. The compounds in which the MePN-H ligand is present can be described as containing dinuclear [SnR2(MePN-H)]22+ (R = Me, Et) units, in which two bridging chelating methylpyridoxinato ligands link two metal atoms. Interactions also exist between the metal and the I3 or NO3 anions and these interactions differ in degree and type. On the other hand, in the only example of a complex containing the MePN ligand, the mononuclear [SnMe2(MePN)2]2+ unit is present. The in vitro antitumor activity of these complexes against the HeLa, A2780 and A2780cis cell lines was determined and compared with that of the equivalent PN derivatives.  相似文献   

3.
The interaction of dimethyl- and diethyltin(IV) cations with methylpyridoxine iodide ([MePN]I; PN = pyridoxine) was studied in ethanol/water (80:20(v/v) containing Cl?, NO3? or I? ions in different molar ratios. Several compounds containing the deprotonated (MePN-H) or neutral (MePN) ligand were isolated and characterized by elemental analysis, IR and NMR (1H, 13C, 119Sn) spectroscopy and FAB mass spectrometry. The compounds [SnMe2(MePN-H)](I3), [SnEt2(MePN-H)](I3), [SnMe2(MePN-H)(NO3)], [SnEt2(MePN-H)(NO3)] and [SnMe2(MePN)2]I2 were studied by X-ray diffractometry. The compounds in which the MePN-H ligand is present can be described as containing dinuclear [SnR2(MePN-H)]22+ (R = Me, Et) units, in which two bridging chelating methylpyridoxinato ligands link two metal atoms. Interactions also exist between the metal and the I3? or NO3? anions and these interactions differ in degree and type. On the other hand, in the only example of a complex containing the MePN ligand, the mononuclear [SnMe2(MePN)2]2+ unit is present. The in vitro antitumor activity of these complexes against the HeLa, A2780 and A2780cis cell lines was determined and compared with that of the equivalent PN derivatives.  相似文献   

4.
The reactions of dimethyl-, diethyl- and dibutyltin(IV) oxides with pyridoxine (PN) in toluene/ethanol led to the formation of compounds [SnR2(PN-2H)] which were characterized by EI and FAB mass spectrometry and by IR, Raman, Mössbauer and 1H, 13C and 119Sn NMR spectroscopy. The structures of [SnEt2(PN-2H)] · CH3OH, [SnBu2(PN-2H)] and [SnEt2(PN-2H)(DMSO)] were determined by X-ray diffractometry. The first two contain dimeric [SnR2(PN-2H)]2 units in which two bridging-chelating pyridoxinate anions link the Sn atoms, while in [SnEt2(PN-2H)(DMSO)] the DMSO coordinates to the tin atom via its O atom in a similar dimeric unit.  相似文献   

5.
Organotin(IV) complexes of [SnR(4−n)Cln] (n = 2, R = Me, nBu; n = 1, R = Ph) react with the bidentate pyridyl ligand 4,4′-di-tert-butyl-2,2′-bipyridine (bu2bpy) to give hexa-coordinated adducts with the general formula [SnR(4−n)Cln(bu2bpy)]. However, the reaction of these organotin(IV) complexes with the corresponding monodentate ligand 4-tert-butylpyridine (bupy) resulted in the formation of the hexa-coordinated complex [SnMe2Cl2(bupy)2] and the penta-coordinated complexes [SnR(4−n)Cln(bupy)] (n = 2, R = nBu; n = 1, R = Ph). Moreover, the reaction of the above organotin(IV) complexes with 4,4′-trimethylenedipyridine (tmdp) yields hexa-coordinated adducts with the general formula [SnR2Cl2(tmdp)] (R = Me, nBu) and the penta-coordinated complex [ClPh3Sn-μ-(tmdp)SnPh3Cl] in the solid state. The resulting complexes have been characterized by multinuclear NMR (1H, 13C, 119Sn) spectroscopy and elemental analysis. NMR data shows that the triphenyltin(IV) adducts are not stable in solution and dissociate to give tetra-coordinated tin(IV) complexes. The X-ray crystal structure determination of [SnMe2Cl2(bu2bpy)] reveals that the tin atom is hexa-coordinated in an octahedral geometry with a trans-[SnMe2] configuration.  相似文献   

6.
Reaction of dichloro‐ and dibromodimethyltin(IV) with 2‐(pyrazol‐1‐ylmethyl)pyridine (PMP) afforded [SnMe2Cl2(PMP)] and [SnMe2Br2(PMP)] respectively. The new complexes were characterized by elemental analysis and mass spectrometry and by IR, Raman and NMR (1H, 13C) spectroscopies. Structural studies by X‐ray diffraction techniques show that the compounds consist of discrete units with the tin atom octahedrally coordinated to the carbon atoms of the two methyl groups in a trans disposition (Sn? C = 2.097(5), 2.120(5) Å and 2.110(6), 2.121(6) Å in the chloro and in the bromo compounds respectively), two cis halogen atoms (Sn? Cl = 2.4908(16), 2.5447(17) Å; Sn? Br = 2.6875(11), 2.7464(9) Å) and the two donor atoms of the ligand (Sn? N = 2.407(4), 2.471(4) Å and 2.360(5), 2.455(5) Å). In both cases, the Sn? N(pyridine) bond length is markedly longer than the Sn? N(pyrazole) distance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Three novel Schiff base adducts [SnMe2Cl2(Hcdacacen)] (1), [SnBu2Cl2(Hcdacacen)2] (2) and [SnPh2Cl2(Hcdacacen)2] (3) have been synthesized by reaction of SnR2Cl2 (R = Me, Bu and Ph) with a new Schiff base ligand methyl-2-[2-(acetylacetoneimino)ethylamino]-1-cyclopentene-1-dithiocarboxylate (Hcdacacen). The ligand and complexes were characterized by elemental analysis and spectroscopic studies. Spectroscopic data suggest that Hcdacacen exists predominately in ketamine tautomeric form and in all complexes acts as a monodentate neutral ligand coordinates to the metal through oxygen atom, while the sulfur atom and imine nitrogen is not involved in the coordination to the tin.  相似文献   

8.
Two palladium(II) complexes, [Pd(bipy)(BzPhe‐N,O)] and [Pd(phen)(BzPhe‐N,O)]·4H2O were synthesized by reactions between Pd(bipy)Cl2 and BzPheH2 (N‐benzoyl‐β‐phenylalanine), Pd(phen) Cl2 and BzPheH2 in water at pH‐9, with their structures determined by X‐ray diffraction analysis. The Pd atom is coordinated by two nitrogen atoms of bipy (or phen), the deprotonated amido type nitrogen atom and one of the carboxylic oxygens of BzPhe (BzPhe = N‐benzoyl‐β‐phenylalaninate dianion). In the complex [Pd(phen) (BzFne‐N,O)] · 4H2O, the side chain of phenylalanine is located above and approximately parallels to the coordination plane. Both the aromatic‐aromatic stacking interaction between the phenyl ring of phenylalanine and phen, and the metal ion‐aromatic interaction between the phenyl ring of phenylalanine and Pd(II) were observed. [Pd(bipy)(BzPhe‐N,O)] has the phenylalanyl side chain oriented outwards from the coordination plane, which is mainly due to the interaction between the carbonyl oxygen atom of the amido group and the phenyl ring of phenylalanine. The reason for the different orientation of phenylalanyl side chain in the complexes was suggested.  相似文献   

9.
The title compound, [Cu{N(CN)2}(C12H8N2)2]BF4, was prepared as part of our study of the shape of coordination polyhedra in five‐coordinated copper(II) complexes. Single‐crystal X‐ray analysis reveals that the structure consists of [Cu{N(CN)2}(phen)2]+ cations (phen is 1,10‐phenanthroline) and BF4 anions. The Cu centre is five‐coordinated in a distorted trigonal bipyramidal manner by four N atoms of two phen ligands and one N atom of a dicyanamide anion, which is coordinated in the equatorial plane at a distance of 1.996 (2) Å. The two axial Cu—Nphen distances have similar values [average 1.994 (6) Å] and are shorter than the two equatorial Cu—Nphen bonds [average 2.09 (6) Å]. This work demonstrates the effect of ligand rigidity on the shape of coordination polyhedra in five‐coordinated copper(II) complexes.  相似文献   

10.
Reactions of R1SnCl3 (R1=CMe2CH2C(O)Me) with (SiMe3)2Se yield a series of organo‐functionalized tin selenide clusters, [(SnR1)2SeCl4] ( 1 ), [(SnR1)2Se2Cl2] ( 2 ), [(SnR1)3Se4Cl] ( 3 ), and [(SnR1)4Se6] ( 4 ), depending on the solvent and ratio of the reactants used. NMR experiments clearly suggest a stepwise formation of 1 through 4 by subsequent condensation steps with the concomitant release of Me3SiCl. Furthermore, addition of hydrazines to the keto‐functionalized clusters leads to the formation of hydrazone derivatives, [(Sn2(μ‐R3)(μ‐Se)Cl4] ( 5 , R3=[CMe2CH2CMe(NH)]2), [(SnR2)3Se4Cl] ( 6 , R2=CMe2CH2C(NNH2)Me), [(SnR4)3Se4][SnCl3] ( 7 , R4=CMe2CH2C(NNHPh)Me), [(SnR2)4Se6] ( 8 ), and [(SnR4)4Se6] ( 9 ). Upon treatment of 4 with [Cu(PPh3)3Cl] and excess (SiMe3)2Se, the cluster fragments to form [(R1Sn)2Se2(CuPPh3)2Se2] ( 10 ), the first discrete Sn/Se/Cu cluster compound reported in the literature. The derivatization reactions indicate fundamental differences between organotin sulfide and organotin selenide chemistry.  相似文献   

11.
The reaction of α,α′‐dimercapto‐o‐xylene (H2dmox) with different precursors such as SnMe2Cl2, [Ti(η5‐C5H5)2Cl2] and [Ti(η5‐C5H4Me)2Cl2] (1:1) in the presence of two equivalents of NEt3 yielded the complexes [SnMe2(dmox)] (1), [Ti(η5‐C5H5)2(dmox)] (2) and [Ti(η5‐C5H4Me)2(dmox)] (3), respectively. 1–3 have been characterized by spectroscopic methods; in addition, complex 3 has been determined by X‐ray diffraction studies. Furthermore, structural studies based on density functional theory calculations of 1 and 2 have been carried out. The cytotoxic activity of 1–3 was tested against the tumour cell lines human adenocarcinoma HeLa, human myelogenous leukaemia K562 and human malignant melanoma Fem‐x. The results of this study show a higher cytotoxicity of the tin(IV) complex (1) in comparison to their titanium(IV) counterparts (2 and 3) as well as an improvement in the cytotoxic activity of compounds 2 and 3 compared to their titanocene(IV) dichloride analogues [Ti(η5‐C5H5)2Cl2] and [Ti(η5‐C5H4Me)2Cl2]. In view of the relatively high cytotoxicity of compound 1, a detailed study on the effects of the in vitro treatment of cancer cell lines using this compound was carried out. Thus cell cycle experiments on all the studied cell lines treated with 1 show that this complex seems to cause disturbances in the G1 phase of HeLa, and in the G1 and G2/M phases of Fem‐x cell line, while almost no disturbances were observed in the cycle of K562 cells treated with 1. Finally, DNA laddering method showed that treatment of the HeLa and Fem‐x cell lines with IC90 doses of 1 resulted in the induction of apoptosis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The complexes [Cu(biq)2]Cl2 and [Cu(biq)2]BF4·biq (biq?=?2,2′-biquinoline) have been prepared and characterized. The interconversion to copper(I) complex [Cu(biq)2]BF4·biq, from [Cu(biq)2]Cl2 has been established. The new complexes have been characterized by elemental analysis, conductivity and magnetic measurements, IR, UV-vis and 1H- and 13C-NMR spectroscopy. The X-ray analysis of the complex [Cu(biq)2]BF4·biq supports the assumption of the interconversion of copper(II) to copper(I) in this case. The crystal structure shows that geometry around the metal is severely distorted from Td, and displays many supramolecular motifs incorporating both hydrophobic (aryl···aryl) and hydrophilic (C–H···F) intermolecular interactions. The microbiological activity of the complexes against bacteria and fungi was found to be high against Candida albicans, and slight to moderate against bacteria. The antimicrobial activity of [Cu(biq)2]BF4·biq was slightly better than that observed for [Cu(biq)2]Cl2 against both bacteria and fungi.  相似文献   

13.
Three new Schiff base adducts, [SnMe2Cl2(H2cdnaphen)] (1), [SnPh2Cl2(H2cdnaphen)2].C6H6 (2) and [SnBu2Cl2(H2cdnaphen)2] (3) were synthesized by the reaction of SnR2Cl2 (R = Me, Bu and Ph) with a Schiff base ligand, Methyl 2-[2-(2-hydroxynaphthaldimino)ethylamino]-1-cyclopentene-1-dithiocarboxylate (H2cdnaphen). The new products were characterized by elemental analysis, IR, 1H NMR and 119Sn NMR spectroscopies. Spectroscopic data suggest that H2cdnaphen exists predominately in keto-amine tautomeric form and in all complexes acts as a monodentate neutral ligand coordinating with the metal through oxygen atom, while the sulfur atom and imine nitrogen are not involved in coordination with the tin. Thermal decomposition of the complexes was studied through thermogravimetry and the thermodynamic activation parameters were determined by the Coats-Redfern method.  相似文献   

14.
The crystal and molecular structures of [Cu(phen)3] Cl2 · CH2Cl2.9H2O (PHEN= 1, 10‐pbenanthroline) have been determined by X‐ray crystallography. The complex crystallizes in triclinic system, space group P1, with lattice parameters a = 1.26000(3), b = 1.37525(4), c = 1.42750(3)nm, α = 85.2970(1),β = 66.8400(1), γ= 83.09(1)°, and Z = 2. The coordinated cations contain a six‐coordinated copper atom chelated by three PHEN ligands, and the Jahn‐Teller effect of the Cu(II) ion results in a distorted octahedral arrangement with the six Cu? N distances ranging from 0.2112(6) to 0.2265(7) nm. In addition to the copper coordinated cation, there are two chloride ions, one dichloromethane solvate and nine water molecules in its asymmetric unit. In the solid state, the title compound forms three dimensional network structures through hydrogen bonds. The intermolecular hydrogen bonds connect the [Cu(phen)3]2+, chloride ion, dichloromethane solvate and H2O moieties altogether.  相似文献   

15.
The title compound, [Cu(C2N3)(C12H8N2)2]ClO4, represents a relatively rare class of compounds with dicyan­amide coordinated in a monodentate manner. The structure is formed by the [Cu{N(CN)2}(phen)2]+ complex cation (phen is 1,10‐phenanthroline) and an uncoordinated ClO4 anion. The Cu atom is five‐coordinate, with a slightly distorted trigonal–bipyramidal environment. The dicyan­amide ligand is coordinated through one nitrile N atom in the equatorial plane, at a distance of 2.033 (6) Å from the metal. The two axial Cu—N distances are similar [mean 1.999 (4) Å] and are substantially shorter than the remaining two equatorial Cu—N bonds [mean 2.087 (1) Å].  相似文献   

16.
Reactions of aquapentachloroplatinic acid, (H3O)[PtCl5(H2O)]·2(18C6)·6H2O ( 1 ) (18C6 = 18‐crown‐6), and H2[PtCl6]·6H2O ( 2 ) with heterocyclic N, N donors (2, 2′‐bipyridine, bpy; 4, 4′‐di‐tert‐butyl‐2, 2′‐bipyridine, tBu2bpy; 1, 10‐phenanthroline, phen; 4, 7‐diphenyl‐1, 10‐phenanthroline, Ph2phen; 2, 2′‐bipyrimidine, bpym) afforded with ligand substitution platinum(IV) complexes [PtCl4(N∩N)] (N∩N = bpy, 3a ; tBu2bpy, 3b ; Ph2phen, 5 ; bpym, 7 ) and/or with protonation of N, N donor yielding (R2phenH)2[PtCl6] (R = H, 4a ; Ph, 4b ) and (bpymH)+ ( 8 ). With UV irradiation Ph2phen and bpym reacted with reduction yielding platinum(II) complexes [PtCl2(N∩N)] (N∩N = Ph2phen, 6 ; bpym, 9 ). Identities of all complexes were established by microanalysis as well as by NMR (1H, 13C, 195Pt) and IR spectroscopic investigations. Molecular structures of [PtCl4(bpym)]·MeOH ( 7 ) and [PtCl2(Ph2phen)] ( 6 ) were determined by X‐ray diffraction analyses. Differences in reactivity of bpy/bpym and phen ligands are discussed in terms of calculated structures of complexes [PtCl5(N∩N)] with monodentately bound N, N ligands (N∩N = bpy, 10a ; phen, 10b ; bpym, 10c ).  相似文献   

17.
Polysulfonylamines. CXVI. Destructive Complexation of the Dimeric Diorganyltin(IV) Hydroxide [Me2Sn(A)(μ‐OH)]2 (HA = Benzene‐1,2‐disulfonimide): Formation and Structures of the Mononuclear Complexes [Me2Sn(A)2(OPPh3)2] and [Me2Sn(phen)2]2⊕ · 2 A · MeCN Destructive complexation of the dimeric hydroxide [Me2Sn(A)(μ‐OH)]2, where A is deprotonated benzene‐1,2‐disulfonimide, with two equivalents of triphenylphosphine oxide or 1,10‐phenanthroline in hot MeCN produced, along with Me2SnO and water, the novel coordination compounds [Me2Sn(A)2(OPPh3)2] ( 3 , triclinic, space group P 1) and [Me2Sn(phen)2]2⊕ · 2 A · MeCN ( 4 , monoclinic, P21/c). In the uncharged all‐trans octahedral complex 3 , the heteroligands are unidentally O‐bonded to the tin atom, which resides on a crystallographic centre of inversion [Sn–O(S) 227.4(2), Sn–O(P) 219.6(2) pm, cis‐angles in the range 87–93°; anionic ligand partially disordered over two equally populated sites for N, two S and non‐coordinating O atoms]. The cation occurring in the crystal of 4 has a severely distorted cis‐octahedral C2N4 coordination geometry around tin and represents the first authenticated example of a dicationic tin(IV) dichelate [R2Sn(L–L′)2]2⊕ to adopt a cis‐structure [C–Sn–C 108.44(11)°]. The five‐membered chelate rings are nearly planar, with similar bite angles of the bidentate ligands, but unsymmetric Sn–N bond lengths, each of the longer bonds being trans to a methyl group [ring 1: N–Sn–N 71.24(7)°, Sn–N 226.81(19) and 237.5(2) pm; ring 2: 71.63(7)°, 228.0(2) and 232.20(19) pm]. In both structures, the bicyclic and effectively CS symmetric A ions have their five‐membered rings distorted into an envelope conformation, with N atoms displaced by 28–43 pm from the corresponding C6S2 mean plane.  相似文献   

18.
Tetrathiafulvalen (TTF) and tetraselenafulvalen (TSF) salts with diorganochloro-stannate anions, [TTF][SnEt2Cl3] (1), [TTF]2[SnPh2Cl4] (2), [TTF]3[SnEt2Cl4] (3), [TTF]3.3[SnPh2Cl4] (4), [TSF]2[SnPh2Cl4] (5) and [TSF]3.3[SnPh2Cl4] (6), were prepared by the reactions of [TTF or TSF]3[BF4]2 with SnR2Cl2 (R = Et or Ph) in the presence of [Ph3PCH2Ph]Cl and by electrocrystallization of TTF or TSF in acetonitrile containing SnR2Cl2 and [Ph3PCH2Ph]Cl. All the salts behave as semiconductors with electrical resistivities of the order of 10–108 Ω cm as compacted samples at 25°C. Electronic reflectance spectra of the simple salts 1, 2 and 5, show a band due to the dimeric(TTF+)2 or (TSF+)2 unit in the 12,200–12,800-cm?1 region. The complex salt 3 exhibits a TTF+/TTF° charge-transfer (CT) band at 8700 cm?1, and the remaining complex salts, 4 and 6, both display CT bands between the radical cations and between the radical cation and the neutral donor molecule. The crystal structure of 3 was determined by a single-crystal X-ray diffraction. The tetragonal crystal, space group I4cm, has cell dimensions a = 11.710(3) Å, c = 25.242(7) Å, and Z = 4. The structure was solved by the heavy-atom method and refined to a final R value of 0.082 for 479 independent reflections with >F° > 3σ(F). TTF molecules exist as trimers, in which a slight lateral shift from the eclipsed TTF overlap occurs, although TTF molecules are arranged with equal spacing between them. The trimer units are located perpendicularly to each other, forming a two-dimensional layer. The [SnEt2Cl4]2? anion is disordered with respect to the two SnEt and two SnCl bonds.  相似文献   

19.
The new organotin(IV) squarates and croconates [SnMe2(H2O)2]C4O4 ( 1 ), [SnMe3]2C4O4 ( 2 ), and [SnMe3(H2O)]2C5O5 ( 3 ), were prepared by salt metathesis from the appropriate sodium salts, and characterized by single‐crystal X‐ray diffraction and infrared spectroscopy. While 1 and 2 are coordination polymers with bridging C4O42– anions, compound 3 exists as a monomer in the solid state. In the hydrated compounds 1 and 3 , the molecules are interconnected by various types of O–H ··· O bridges between non‐coordinated carbonyl oxygen atoms and water ligands, resulting in a supramolecular layer ( 1 , 2 ) or network structure ( 3 ), respectively.  相似文献   

20.
Abstract

Ruthenium (II) complexes of the type RuL(CO)2Cl2, [RuL(CO)2L? 2]2+ and [RuL(CO)2Cl L′]+ [L = bipyridine (bpy), phenanthroline (phen), biquinoline (biq) and L′ = pyridine (py), 4-chloropyridine (Cl-py), 4-methoxypyridine (MeO-py)] were synthesized from [Ru(CO)2Cl2]n and L, to produce the intermediate RuL(CO)2Cl2 followed by hydrolysis and reaction with L′. The catalytic activity of these complexes in epoxidation of olefins with iodosylbenzene under ambient conditions was investigated. A possible mechanism of these reactions, explaining the effects of the ligands on the reaction was explored. At least one carbonyl ligand remained bound to the metal through the reaction. The formation of an oxo intermediate was inferred from spectroscopic detection of bridged oxygen Ru—O—Ru and Ru=O species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号