首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Mixed-mode hydrophilic interaction/cation-exchange chromatography (HILIC/CEX) was applied to the separation of two mixtures of synthetic peptide standards: (i) a 27-peptide mixture containing three groups of peptides (each group containing nine peptides of the same net charge of +1, +2 or +3), where the hydrophilicity/hydrophobicity of adjacent peptides within the groups varied only subtly (generally by only a single carbon atom); and (ii) peptide pairs with the same composition but different sequences, where the sole difference between the peptides was the position of a single amino acid substitution. HILIC/CEX is essentially CEX chromatography in the presence of high levels of organic modifier (generally ACN). The present study demonstrated the dramatic effect of increasing ACN concentration (optimum levels of 60-80%, depending on the application) on the separation of both mixtures of peptides. The greater the charge on the peptides, the better the separation achievable by HILIC/CEX. In addition, HILIC/CEX separation of both the peptide mixtures used in the present study was shown to be superior to that of the more commonly applied RP-HPLC mode. Our results highlight again the efficacy of HILIC/CEX as a peptide separation mode in its own right as well as an excellent complement to RP-HPLC.  相似文献   

2.
Selected hydrophilic interaction chromatography (HILIC) columns packed with bare silica, bridge-ethyl hybrid silica, or an amide sorbent chemistry were utilized for an investigation of chromatographic behavior and separation selectivity of tryptic peptides. Retention model was proposed allowing for retention prediction of peptides with correlation coefficient R(2)~0.92-0.97 for various columns. The values of optimized amino acid retention coefficients were compared to those obtained for reversed-phase liquid chromatography (Gilar et al., Anal. Chem. 2010, 82, 265-275) and used to elucidate the impact of different amino acid on peptide HILIC retention. In contrast to reversed-phase chromatography, where presence of Phe, Trp, Ile, and Leu amino acid residues in sequence strongly promoted, and presence of hydrophilic His, Lys and Arg residues strongly reduced peptide retention, the effects of these amino acid residues in HILIC were opposite (His, Lys and Arg promote, Phe, Trp, Ile and Leu demote peptide retention in HILIC). Retention coefficient optimized for pH experiments illustrated the impact of silanols on HILIC retention.  相似文献   

3.
During recent decades, hydrophilic interaction liquid chromatography (HILIC) ahs been introduced to fractionate or purify especially polar solutes such as peptides and proteins while reversed‐phase liquid chromatography (RPLC) is also a common strategy. RPLC is also a common dimension in multidimensional chromatography. In this study, the potential of HILIC vs RPLC chromatography was compared for proteome mapping of human peripheral blood mononuclear cell extract. In HILIC a silica‐based stationary phase and for RPLC a C18 column were applied. Then separated proteins were eluted to an ion trap mass spectrometry system. Our results showed that the HILIC leads to more proteins being identified in comparison to RPLC. Among the total 181 identified proteins, 56 and 38 proteins were fractionated specifically by HILIC and RPLC, respectively. In order to demonstrate this, the physicochemical properties of identified proteins such as polarity and hydrophobicity were considered. This analysis indicated that polarity may play a major role in the HILIC separation of proteins vs RPLC. Using gene ontology enrichment analysis, it was also observed that differences in physicochemical properties conform to the cellular compartment and biological features. Finally, this study highlighted the potential of HILIC and the great orthogonality of RPLC in gel‐free proteomic studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Novel pH-responsive polymer-grafted silica was successfully synthesized through the radical "grafting from" polymerization on azo initiator-immobilized silica. The immobilization of azo initiator onto the silica surface was achieved by the reaction of surface amino groups with 4,4'-azobis(4-cyanovaleric acid chloride). The polymer-grafted silica was prepared by stirring suspension of the azo initiator-immobilized silica in anhydrous dioxane containing acrylic acid (AAc) and butyl acrylate (BA). The resulting polymer-grafted silica was demonstrated to be pH responsive to hydrophobic/hydrophilic property by reversed-phase liquid chromatography (RPLC) and hydrophilic interaction chromatography (HILIC). In RPLC mode, the retention of aromatic compounds decreased with the increase in the pH of mobile phase. However, the opposite result was obtained in HILIC mode; the retention of soybean isoflavones was stronger with the mobile phase at higher pH. Finally, the separations of sulfonamides and soybean isoflavones were carried out in RPLC mode and the separation of some nucleotides was achieved in HILIC mode.  相似文献   

5.
Summary A set of hydrophilicity parameters in a normal-phase liquid chromatography of peptides is presented in order to clarify the contribution of individual amino acid residues to peptide retention and to predict retention times. The retention of 100 peptides was studied using normal-phase liquid chromatography on amide, diol and silica columns. An acetonitrile-water mixed solution containing 0.2% trifluoroacetic acid +0.2% triethylamine was used as the mobile phase in a linear gradient elution system. The contribution of each residue upon retention was calculated by linear multiple regression analysis. This paper described the contribution values as “hydrophilicity retention coefficients”. Using these hydrophilicity retention coefficients, retention times could be predicted for peptides of known amino acid content and sequence. A set of hydrophilicity retention coefficients on each column was successfully explained by contributions to the degree of retention.  相似文献   

6.
In the present study, hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) combined with tandem mass spectrometric detection (MS/MS) were evaluated and compared for the determination of donepezil, cetirizine and loratadine in human plasma, in terms of sensitivity and sample preparation procedure. A retention study for the above compounds of various polarities was performed, using both C(18) and silica columns, with several aqueous-organic mobile phase ratios, in order to investigate their retention mechanism profile under HILIC and RPLC. Both chromatographic conditions were compared for chromatographic analysis of plasma samples processed with a liquid-liquid extraction (LLE) method for donepezil determination, resulting in significantly higher sensitivity under HILIC. Furthermore, HILIC and RPLC were compared for direct injection, and novel methods including LLE, solid-phase extraction and protein precipitation protocols were developed. Direct injection technique significantly reduced sample preparation time, increasing at the same time method sensitivity. The current study contributes to broadening the range of analyzable compounds by HILIC-MS/MS to molecules of medium polarity.  相似文献   

7.
We have developed further a chromatographic model for studying the hydrophobic interactions which characterize the way a ligand binds to its receptor. This model is based on observing the retention behaviour of de novo designed model 18-residue amphipathic alpha-helical peptides (representing the hydrophobic binding domain of a ligand) on reversed-phase packings by varying hydrophobicity (representing a receptor protein with a hydrophobic binding pocket). Mutants of the "native" peptide ligand (which contains seven Leu residues in its non-polar face) were designed by replacing one residue in the center of the extremely non-polar face of the amphipathic alpha-helix. Through reversed-phase liquid chromatography of these peptides at pH 2.0 on cyano and C18 columns, we have demonstrated how an increase in receptor hydrophobicity (represented by an increase in column stationary phase hydrophobicity; cyano --> C18) significantly enhances hydrophilicity of polar amino acid side-chains at the ligand-receptor interface while moderately enhancing the hydrophobicity of non-polar side-chains. The addition of salt (100 mM sodium perchlorate) to the aqueous environment surrounding the binding site of receptor and ligand was also shown to have a profound effect on side-chain hydrophilicity/hydrophobicity in the binding interface. This effect was particularly dramatic for the positively charged side-chains Arg, Lys and His, whose significant enhancement of hydrophobicity in the presence of the cyano column contrasted with their increase in hydrophilicity in the presence of the considerably more hydrophobic C18 stationary phase. Our results have major implications to understanding the influence of hydrophobic and aqueous environment on hydrophilicity/hydrophobicity of amino acid side-chains and the role side-chains play in the folding and stability of proteins.  相似文献   

8.
Hydrophilic-interaction chromatography (HILIC) was recently introduced as a potentially useful separation mode for the purification of peptides and other polar compounds. The elution order of peptides in HILIC, which separates solutes based on hydrophilic interactions, should be opposite to that obtained in reversed-phase chromatography, which separates solutes based on hydrophobic interactions. Three series of peptides, two of which consisted of positively charged peptides (independent of pH at pH less than 7) and one of which consisted of uncharged or negatively charged peptides (dependent on pH), and which varied in overall hydrophilicity/hydrophobicity, were utilized to examine the separation mechanism and efficiency of HILIC on hydrophilic and strong cation-exchange columns.  相似文献   

9.
以亲水作用色谱为核心的液相色谱联用技术及其应用研究   总被引:7,自引:0,他引:7  
王媛  顾惠新  路鑫  许国旺 《色谱》2008,26(6):649-657
亲水作用色谱(HILIC)是近年来色谱领域研究的热点之一。本文围绕复杂体系样品中亲水性组分的分离分析,综述了国际上近年 来发展的以HILIC为核心的多种液相色谱联用技术及其应用。简要介绍了HILIC的起源、定义、分离特点及其常用固定相;比较了HILIC和反相色谱(RPLC)的选择特性;针对不同层次的分离对象和分离要求,讨论了多种基于HILIC的液相色谱以及液相色谱-质谱联用技术的分离特点和适用范围。  相似文献   

10.
徐雪峰  沈爱金  郭志谋  梁鑫淼 《色谱》2013,31(3):185-190
基于巯基硅胶与单取代-6A-烯丙氨基-β-环糊精的巯基-烯点击化学反应,制备了β-环糊精(Click TE-CD)共价键合固定相。元素分析结果表明β-环糊精被成功键合到硅胶表面。以黄酮苷类化合物为模型,考察了Click TE-CD固定相在亲水、反相和超临界流体色谱等分离模式下的色谱保留行为。黄酮苷类化合物保留时间随流动相中乙腈含量的变化呈现典型的U型曲线,表明Click TE-CD固定相具有亲水/反相的双重保留特性。应用几何学方法测得Click TE-CD固定相在反相/亲水、亲水/超临界、反相/超临界混合模式下的正交性分别为69.8%、50.8%、50.8%。对比复杂中药样品降香提取物在反相、亲水、超临界等模式下的分离情况,结果表明Click TE-CD固定相在分离中药复杂样品方面具有极大潜力,可以在一根色谱柱上通过分离模式的改变,实现二维液相色谱的分离。Click TE-CD固定相不同分离模式的分离性能和较好的正交性表明该固定相具有在液相色谱方法发展和二维液相色谱分离方面应用的潜力。  相似文献   

11.
High-performance liquid chromatography (HPLC) is widely used for separation of complex peptide mixtures before mass spectrometry-based proteome analysis. In this analysis, reversed phase HPLC (RPHPLC) using non-polar stationary phases such as surface-modified silica containing alkyl groups (e.g., C18) is typically employed. Because of the high heterogeneity of proteomic samples, multidimensional separation approaches gained increasing attention recently to tackle this complexity and extremely high range of concentrations. In two-dimensional liquid chromatography, hydrophilic interaction chromatography (HILIC) is often a method of choice for combination with RP-HPLC because it uses reversed-phase type eluents and allows efficient separation of polar peptides. Due to the high degree of orthogonality in this two-dimensional separation space, it is tempting to develop approaches for predicting peptide retention times for HILIC-based separations similar to the ones for RP-HPLC. Recent successful efforts in this area were focused on developing retention coefficient (RC)-based approaches. Herein, we explored the feasibility of using a statistical thermodynamic model for prediction of peptide retention times in HILIC separations and determined the phenomenological parameters of the model for a bare silica column. The performance of the developed model was tested using HPLC-MS analysis of a set of synthetic peptides, as well as a tryptic peptide mixture.  相似文献   

12.
亲水作用色谱固定相及其在中药分离中的应用   总被引:4,自引:0,他引:4  
郭志谋  张秀莉  徐青  梁鑫淼 《色谱》2009,27(5):675-681
亲水作用色谱(HILIC)作为一种分离极性化合物的液相色谱模式,近年来越来越受到关注和重视。一方面是因为强极性化合物的分离问题引起了各个研究领域的重视,如药物分析、代谢组学、蛋白质组学等研究领域都不同程度地涉及强极性化合物的分离问题;另一方面是由于HILIC具有流动相组成简单、分离效率较高、与质谱兼容以及反压较低等优势。固定相是HILIC发展和应用的基础,本文主要从固定相分子结构的角度对HILIC固定相的结构特征、保留特性以及应用概况等进行了综述。对传统正相色谱固定相用于HILIC以及专门设计的HILIC固定相进行了介绍,评述了各自的优缺点和应用概况;对近年来HILIC固定相在中药分离中的应用进行了介绍;并对HILIC固定相的发展进行了展望。  相似文献   

13.
Guo Y  Yuan Q  Li R  Huang Y 《色谱》2012,30(3):232-238
亲水作用色谱(HILIC)是一种分离极性和亲水性化合物的液相色谱模式,其作为反相液相色谱(RPLC)的重要补充,近年来越来越受到各个领域的关注和重视。这不只是因为强极性化合物的分离问题在各个领域引起了重视,而且因为与RPLC比较,HILIC具有流动相组成黏度低、色谱柱渗透性好、与质谱联用的灵敏度高及反压较低等优势。本文简要概述了HILIC的发展历程、特点及保留机理,重点介绍了HILIC用于环境分析的最新进展,评述了HILIC及RPLC用于污染物分析的优缺点,并指出了HILIC用于环境分析的未来发展趋势。  相似文献   

14.
Comprehensive proteomic analyses necessitate efficient separation of peptide mixtures for the subsequent identification of proteins by mass spectrometry (MS). However, digestion of proteins extracted from cells and tissues often yields complex peptide mixtures that confound direct comprehensive MS analysis. This study investigated a zwitterionic hydrophilic interaction liquid chromatography (ZIC‐HILIC) technique for the peptide separation step, which was verified by subsequent MS analysis. Human serum albumin (HSA) was the model protein used for this analysis. HSA was digested with trypsin and resolved by ZIC‐HILIC or conventional strong cation exchange (SCX) prior to MS analysis for peptide identification. Separation with ZIC‐HILIC significantly improved the identification of HSA peptides over SCX chromatography. Detailed analyses of the identified peptides revealed that the ZIC‐HILIC has better peptide fractionation ability. We further demonstrated that ZIC‐HILIC is useful for quantitatively surveying cell surface markers specifically expressed in undifferentiated embryonic stem cells. These results suggested the value of ZIC‐HILIC as a novel and efficient separation method for comprehensive and quantitative proteomic analyses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, a poly-l-lysine-grafted stationary phase was synthesized by polymerization of N-carboxyanhydride of l-lysine initiated by 3-aminopropylated silica. The resulting material was characterized by FT-IR spectra, elemental analysis and thermogravimetric analysis, which clearly indicated that the new phase had been prepared successfully. The retention of polar solutes depending on acetonitrile content in mobile phase exhibited ??U-shaped?? curves, which was an indication of hydrophilic interaction liquid chromatography (HILIC)/reversed-phase liquid chromatography (RPLC) mixed-mode retention behavior. The retention mechanisms in HILIC and RPLC modes also were investigated. Phenol compounds, aniline compounds and hydrophilic compounds were separated in RPLC or HILIC mode on the new stationary phase, respectively. This result shows that the new phase could be used for both RPLC and HILIC applications, providing greater flexibility for real sample analysis.  相似文献   

16.
A procedure utilizing reversed-phase high-performance liquid chromatography (HPLC) is described for the identification and quantitation of individual phosphorylated and sulphated fibrinopeptides present in fibrin clot supernatants. Fibrinopeptides from human, rabbit and canine fibrinogens, which have different structures and degrees of phosphorylation and sulphation, were used to demonstrate the applicability of these methods. The procedure relies on the increased peptide hydrophobicity following removal of highly charged phosphate or sulphate groups. Dephosphorylated or desulphated peptides are thus more strongly retained on the reversed-phase HPLC column and are eluted later than their corresponding phosphorylated or sulphated peptide counterparts. Dephosphorylation is achieved by treatment of fibrinopeptide-containing clot supernatants with alkaline phosphatase. Phosphorylated peptides are characterized by an increased retention time resulting from loss of phosphate, whereas non-phosphorylated peptides remain unaffected. Similarly, a prolongation of the peptide retention time resulting from desulphation by mild acid hydrolysis serves to verify sulphation of a peptide.  相似文献   

17.
Li J  Li X  Guo Z  Yu L  Zou L  Liang X 《The Analyst》2011,136(19):4075-4082
Desalting peptides before mass spectrometry analysis is important because salts lead to adduct formation, increased chemical noise and ion suppression effect. A high concentration of salt can clog nanoelectrospray ionization (ESI) emitters. The reverse phase C18 material is commonly used to desalt peptides because of its high binding capacity. However, peptides with high hydrophilicity, such as glycopeptides, are not retained well on this material, resulting in the loss of peptide information. To improve the efficiency of glycopeptide desalting, we introduced a hydrophilic interaction chromatography (HILIC)-based material named click maltose. Four glycoproteins, horseradish peroxidase (HRP), human serum immunoglobulin G (IgG), bovine ribonuclease B (RNase B), and α-1 acid glycoprotein (AGP) were chosen as models and their glycopeptides were desalted with click maltose, AQ C18, Empore C18 and ZipTip C18. Click maltose as a HILIC material exhibited better performance than the other three C18 materials for both number of targeted glycopeptides and their corresponding intensities. In addition, accurate glycopeptide profiling was achieved with click maltose desalting regardless of peptide lengths and glycan types.  相似文献   

18.
This paper describes a procedure in which cysteine containing peptides from tryptic digests of complex protein mixtures were selected by covalent chromatography based on thiol-disulfide exchange. identified by mass spectrometry, and quantified by differential isotope labeling. Following disruption of disulfide bridges with 2,2'-dipyridyl disulfide, all proteins were digested with trypsin and acylated with succinic anhydride. Cysteine containing peptides were then selected from the acylated digest by disulfide interchange with sulfhydryl groups on a thiopropyl Sepharose gel. Captured cysteine containing peptides were released from the gel with 25 mM dithiothreitol (pH 7.5) containing 1 mM (ethylenedinitrilo)tetraacetic acid disodium salt and alkylated with iodoacetic acid subsequent to fractionation by reversed-phase liquid chromatography (RPLC). Fractions collected from the RPLC column were analyzed by matrix-assisted laser desorption ionization mass spectrometry. Based on isotope ratios of peptides from experimental and control samples labeled with succinic and deuterated succinic anhydride, respectively, it was possible to determine the relative concentration of each peptide species between the two samples. Peptides obtained from proteins that were up-regulated in the experimental sample were easily identified by an increase of the relative amount of the deuterated peptide. The results of these studies indicate that by selecting cysteine containing peptides, the complexity of protein digest could be reduced and database searches greatly simplified. When coupled with the isotope labeling strategy for quantification it was possible to determine proteins that were up-regulated in plasmid bearing Escherichia coli when expression of plasmid proteins was induced. Up-regulation of several proteins of E. coli origin was also noted.  相似文献   

19.
The relative strength of interaction between anionic (SDS) and nonionic surfactant (octaethoxylated oleyl alcohol, GEN) and homologous series of peptides was determined by reversed-phase thin-layer chromatography (RP-TLC) carried out on alumina layers impregnated with paraffin oil. The relative strength of interaction was calculated and was correlated with the physicochemical parameters of peptides. It was established that each peptide interacted with both surfactants and with their mixture (1:1, m/m). The relative strength of interaction depended on the number of amino acid units in the peptide, side chain bulk and electronic properties and hydrophobicity of the amino acids. The impact of individual parameters highly depended on the character of surfactant. The data prove that the retention order of peptides can be modified by adding different surfactants and surfactant mixtures to the mobile phase resulting in improved separation.  相似文献   

20.
This review represents a summary of the development and application of a novel mixed-mode HPLC approach to the separation and analysis of peptides and proteins termed hydrophilic interaction/cation-exchange chromatography (HILIC/CEX). This approach combines the most advantageous aspects of two widely different separation mechanisms, i.e. a separation based on hydrophilicity/hydrophobicity differences between polypeptides overlaid on a separation based on net charge. Applications described include HILIC/CEX separations of cyclic peptides, alpha-helical peptides, random coil peptides and modified or deletion products of synthetic peptides. In addition, the excellent resolving ability of HILIC/CEX for modified histone proteins is described. This approach is shown to represent an excellent complement to RP chromatography (RPC), as well as being a potent analytical tool in its own right.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号