首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 346 毫秒
1.
The spectral properties of La1–xSrxTiO3, a doped Mott insulator with strong Coulomb correlations, are calculated with the ab initio computational scheme LDA+DMFT(QMC). It starts from the non-interacting electronic band structure as calculated by the local density approximation (LDA), and introduces the missing correlations by the dynamical mean-field theory (DMFT), using numerically exact quantum Monte-Carlo (QMC) techniques to solve the resulting self-consistent multi-band single-impurity problem. The results of the LDA+DMFT(QMC) approach for the photoemission spectra of La1–xSrxTiO3 are in good agreement with experiment and represent a considerable qualitative and quantitative improvement on standard LDA calculations. Received 20 May 2000 and Received in final form 27 July 2000  相似文献   

2.
The first-order metal-insulator transition (MIT) in paramagnetic V2O3 is studied within the ab initio scheme LDA+DMFT, which merges the local density approximation (LDA) with dynamical mean field theory (DMFT). With a fixed value of the Coulomb U=6.0 eV, we show how the abrupt pressure driven MIT is understood in a new picture: a pressure-induced decrease of the trigonal distortion within the strong correlation scenario (which is not obtained within LDA). We find good quantitative agreement with (i) switch of the orbital occupation of (a(1g),e(pi)(g1),e(pi)(g2)) and the spin state S=1 across the MIT, (ii) thermodynamics and dc resistivity, and (iii) the one-electron spectral function, within this new scenario.  相似文献   

3.
We discuss the recently proposed LDA’ + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA’ + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA’ + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO3 and Sr2RuO4). It is shown that for NiO and CoO systems, the LDA’ + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA’ + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA’ + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.  相似文献   

4.
We present an ab initio quantum theory of the metal-insulator transition in Ti2O3. The recently developed cluster LDA+DMFT scheme is applied to describe the many-body features of this compound. The conventional single site DMFT cannot reproduce a low temperature insulating phase for any reasonable values of the Coulomb interaction. We show that the nonlocal Coulomb interactions and the strong chemical bonding within the Ti-Ti pair is the origin of the small gap insulating ground state of Ti2O3.  相似文献   

5.
We present a consistent way of treating a double counting problem unavoidably arising within the LDA + DMFT combined approach to realistic calculations of electronic structure of strongly correlated systems. The main obstacle here is the absence of systematic (e.g., diagrammatic) way to express LDA (local density approximation) contribution to exchange correlation energy appearing in the density functional theory. It is not clear then, which part of interaction entering DMFT (dynamical mean-field theory) is already taken into account through LDA calculations. Because of that, up to now there is no accepted unique expression for the double counting correction in LDA + DMFT. To avoid this problem we propose here the consistent LDA’ + DMFT approach, where LDA exchange correlation contribution is explicitly excluded for correlated states (bands) during self-consistent band structure calculations. What is left out of Coulomb interaction for those strongly correlated states (bands) is its non-local part, which is not included in DMFT, and the local Hartreelike contribution. Then the double counting correction is uniquely reduced to the local Hartree contribution. Correlations for strongly correlated states are then directly accounted for via the standard DMFT. We further test the consistent LDA’ + DMFT scheme and compare it with conventional LDA + DMFT calculating the electronic structure of NiO. Opposite to the conventional LDA + DMFT our consistent LDA’ + DMFT approach unambiguously produces the insulating band structure in agreement with experiments.  相似文献   

6.
Pseudogap phenomena are observed for the normal underdoped phase of different high-T c cuprates. Among others, the Bi2Sr2CaCu2O8 − δ (Bi2212) compound is one of the most studied experimentally. To describe the pseudogap regime in Bi2212, we use a novel generalized ab initio LDA + DMFT + Σk hybrid scheme. This scheme is based on the strategy of one of the most powerful computational tools for real correlated materials: the local density approximation (LDA) + dynamical mean-field theory (DMFT). Conventional LDA + DMFT equations are here supplied with an additional (momentum-dependent) self-energy Σk in the spirit of our recently proposed DMFT + Σk approach taking into account pseudogap fluctuations. In the present model, Σk describes nonlocal correlations induced by short-range collective Heisenberg-like antiferromagnetic spin fluctuations. The effective single-impurity problem of the DMFT is solved by the numerical renormalization group (NRG) method. Material-specific model parameters for the effective x 2y 2 orbital of Cu-3d shell of the Bi2212 compound, e.g., the values of intra-and interlayer hopping integrals between different Cu sites, the local Coulomb interaction U, and the pseudogap potential Δ were obtained within the LDA and LDA + DMFT schemes. Here, we report on the theoretical LDA + DMFT + Σk quasiparticle band dispersion and damping, Fermi surface renormalization, momentum anisotropy of (quasi)static scattering, densities of states, spectral densities, and angular-resolved photoemission (ARPES) spectra, taking into account pseudogap and bilayer splitting effects for normal (slightly) underdoped Bi2212 (δ = 0.15). We show that LDA + DMFT + Σk successfully describes strong (pseudogap) scattering close to Brillouin zone boundaries. Our calculated LDA + DMFT + Σk Fermi surfaces and ARPES spectra in the presence of pseudogap fluctuations are almost insensitive to the bilayer splitting strength. However, our LDA-calculated value of bilayer splitting is rather small to describe the experimentally observed peak-dip-hump structure. The results obtained are in good semiquantitative agreement with various recent ARPES experiments. The article was submitted by the authors in English.  相似文献   

7.
In this review, we describe general ideas of the LDA+DMFT method which merges dynamical mean-field theory (DMFT) and density functional theory (in particular the local density approximation (LDA)). Nowadays, the LDA+DMFT computational scheme is the most powerful numerical tool for studying physical properties of real materials and chemical compounds. It incorporates the advantage of DMFT to treat the full range of local dynamical Coulomb correlations and the ability of band methods to describe material-specific band dispersion caused by the lattice periodicity. We briefly discuss underlying physical ideas of LDA+DMFT and its mathematical implementation. Then different algorithms applied to solution of the DMFT impurity problem are briefly described. We then give examples of successful applications of the LDA+DMFT method to study spectral and magnetic properties of recently synthesized compounds like pnictide superconductors as well as classic charge-transfer systems NiO and MnO.  相似文献   

8.
K. Held 《物理学进展》2013,62(6):829-926
The calculation of the electronic properties of materials is an important task of solid-state theory, albeit particularly difficult if electronic correlations are strong, e.g., in transition metals, their oxides and in f-electron systems. The standard approach to material calculations, the density functional theory in its local density approximation (LDA), incorporates electronic correlations only very rudimentarily and fails if the correlations are strong. Encouraged by the success of dynamical mean field theory (DMFT) in dealing with strongly correlated model Hamiltonians, physicists from the bandstructure and the many-body communities have joined forces and developed a combined LDA + DMFT method recently. Depending on the strength of electronic correlations, this new approach yields a weakly correlated metal as in the LDA, a strongly correlated metal or a Mott insulator. This approach is widely regarded as a breakthrough for electronic structure calculations of strongly correlated materials. We review this LDA + DMFT method and also discuss alternative approaches to employ DMFT in electronic structure calculations, e.g., by replacing the LDA part with the so-called GW approximation. Different methods to solve the DMFT equations are introduced with a focus on those that are suitable for realistic calculations with many orbitals. An overview of the successful application of LDA + DMFT to a wide variety of materials, ranging from Pu and Ce, to Fe and Ni, to numerous transition metal oxides, is given.  相似文献   

9.
The two-band Hubbard model involving subbands of different widths is investigated via finite-temperature exact diagonalization (ED) and dynamical mean field theory (DMFT). In contrast to the quantum Monte Carlo (QMC) method which at low temperatures includes only Ising-like exchange interactions to avoid sign problems, ED permits a treatment of Hund's exchange and other onsite Coulomb interactions on the same footing. The role of finite-size effects caused by the limited number of bath levels in this scheme is studied by analyzing the low-frequency behavior of the subband self-energies as a function of temperature, and by comparing with numerical renormalization group (NRG) results for a simplified effective model. For half-filled, non-hybridizing bands, the metallic and insulating phases are separated by an intermediate mixed phase with an insulating narrow and a bad-metallic wide subband. The wide band in this phase exhibits different degrees of non-Fermi-liquid behavior, depending on the treatment of exchange interactions. Whereas for complete Hund's coupling, infinite lifetime is found at the Fermi level, in the absence of spin-flip and pair-exchange, this lifetime becomes finite. Excellent agreement is obtained both with new NRG and previous QMC/DMFT calculations. These results suggest that-finite temperature ED/DMFT might be a useful scheme for realistic multi-band materials.  相似文献   

10.
We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.  相似文献   

11.
In this paper we provide theoretical LDA + DMFT support of recent angle-resolved photoemission spectroscopy (ARPES) observation of the so-called hidden hole-like band and corresponding hidden Fermi surface sheet near Γ-point in the K0.62Fe1.7Se2 compound. To some extent, this is a solution to the long-standing riddle of Fermi surface absence around Γ-point in the KxFe2–ySe2 class of iron chalcogenide superconductors. In accordance with the experimental data, Fermi surface was found near the Γ-point within LDA + DMFT calculations. Based on the LDA + DMFT analysis in this paper it is shown that the largest of the experimental Fermi surface sheets is actually formed by a hybrid Fe-3d ( xy, xz, yz )quasiparticle band. It is also shown that the Fermi surface is not a simple circle as DFT-LDA predicts, but has (according to the LDA + DMFT) a more complicated “propeller”-like structure due to correlations and multiorbital nature of the KxFe2–ySe2 materials. While the smallest experimental Fermi surface around Γ-point is in some sense fictitious, since it is formed by the summation of the intensities of the spectral function associated with “propeller” loupes and is not connected to any of quasiparticle bands.  相似文献   

12.
Calculations employing the local density approximation combined with static and dynamical mean field theories (LDA+U and LDA+DMFT) indicate that the metal-insulator transition observed at 32 GPa in paramagnetic LaMnO3 at room temperature is not a Mott-Hubbard transition, but is caused by orbital splitting of the majority-spin eg bands. For LaMnO3 to be insulating at pressures below 32 GPa, both on-site Coulomb repulsion and Jahn-Teller distortion are needed.  相似文献   

13.
We investigate electronic structure of the new iron chalcogenide high temperature superconductor K1?x Fe2?y Se2 (hole doped case with x = 0.24, y = 0.28) in the normal phase using the novel LDA’+DMFT computational approach. We show that this iron chalcogenide is more correlated in a sense of bandwidth renormalization (energy scale compression by factor about 5 in the interval ±1.5 eV), than typical iron pnictides (compression factor about 2), though the Coulomb interaction strength is almost the same in both families. Our results for spectral densities are in general agreement with recent ARPES data on this system. It is found that all Fe-3d(t 2g ) bands crossing the Fermi level have equal renormalization, in contrast to some previous interpretations. Electronic states at the Fermi level are of predominantly xy symmetry. Also we show that LDA’+DMFT results are in better agreement with experimental spectral function maps, than the results of conventional LDA+DMFT. Finally we make predictions for photoemission spectra lineshape for K0.76Fe1.72Se2.  相似文献   

14.
赵建洲  庄嘉宁  邓小宇  毕延  蔡灵仓  方忠  戴希 《中国物理 B》2012,21(5):57106-057106
We propose an efficient implementation of combining dynamical mean field theory(DMFT) with electronic structural calculation based on the local density approximation(LDA).The pseudo-potential-plane-wave method is used in the LDA part,which enables it to be applied to large systems.The full loop self consistency of the charge density has been reached in our implementation,which allows us to compute the total energy related properties.The procedure of LDA+DMFT is introduced in detail with a complete flow chart.We have also applied our code to study the electronic structure of several typical strong correlated materials,including cerium,americium and NiO.Our results fit quite well with both the experimental data and previous studies.  相似文献   

15.
The magnetic correlation between magnetic impurities in semiconductors is investigated by performing the quantum Monte Carlo (QMC) simulation. The Anderson Hamiltonian with the realistic parameters obtained by the local density approximation (LDA) calculation is employed. The LDA calculation gives a dispersion of the host (GaAs) electron and the mixing energy between host and magnetic impurity (Mn). The mixing between host and impurity electrons generates the impurity bound state in the energy gap of semiconductors. The long range ferromagnetic coupling is observed when the Fermi energy locates between the band edge and the impurity bound state. The ferromagnetic coupling is enhanced by decreasing temperature.  相似文献   

16.
We present results of the combined study of the magnetic properties of Li2RuO3 by means of nuclear magnetic resonance (NMR) spectroscopy and theoretical dynamical mean-field theory (LDA + DMFT) calculations. The NMR data clearly show the onset of a thermal activation process in the high temperature region, T > 560K, which is tentatively ascribed to the formation of the valence bond liquid. The LDA + DMFT calculations demonstrate that the magnetic response at these temperatures is mostly due to the xz/yz orbitals, while the xy orbitals of Ru still form molecular orbitals. Thus, Ru ions are in the orbital-selective state in the high temperature phase of Li2RuO3.  相似文献   

17.
The material-specific electronic band structure of the electron-doped high- T c cuprate Nd1.85Ce0.15CuO4 (NCCO) is calculated in the pseudogap regime using the recently developed generalized LDA + DMFT + Σ k scheme. The LDA/DFT (density-functional theory within local density approximation) provides model parameters (hopping integral values and local Coulomb interaction strength) for the one-band Hubbard model, which is solved by the DMFT (dynamical mean-field theory). To take pseudogap fluctuations into account, the LDA + DMFT is supplied with an “external” k-dependent self-energy Σ k that describes interaction of correlated conducting electrons with nonlocal Heisenberg-like antiferromagnetic (AFM) spin fluctuations responsible for the pseudogap formation. Within this LDA + DMFT + Σ k approach, we demonstrate the formation of pronounced hot spots on the Fermi surface (FS) map in NCCO, opposite to our recent calculations for Bi2Sr2CaCu2O8 − δ (Bi2212), which have produced a rather extended region of the FS “destruction.” There are several physical reasons for this fact: (i) the hot spots in NCCO are located closer to the Brillouin zone center; (ii) the correlation length ξ of AFM fluctuations is longer for NCCO; (iii) the pseudogap potential Δ is stronger than in Bi2212. Comparison of our theoretical data with recent bulk-sensitive high-energy angle-resolved photoemission (ARPES) data for NCCO provides good semiquantitative agreement. Based on that comparison, an alternative explanation of the van Hove singularity at −0.3 eV is proposed. Optical conductivity for both Bi2212 and NCCO is also calculated within the LDA + DMFT + Δ k scheme and is compared with experimental results, demonstrating satisfactory agreement. The text was submitted by the authors in English.  相似文献   

18.
Effects of Coulomb correlation on the LaFeAsO electronic structure are investigated by the LDA + DMFT(QMC) method (combination of the local density approximation with the dynamic mean-field theory; impurity solver is a quantum Monte Carlo algorithm). The calculation results show that LaFeAsO is in the regime of intermediate correlation strength with a significant part of the spectral density moved from the Fermi energy to the Hubbard bands and far from the edge of the metal-insulator transition. Correlations affect iron d-orbitals differently. The t 2g states (xz, yz and x 2y 2 orbitals) have a higher energy due to crystal field splitting and are nearly half-filled. Their spectral functions have a pseudogap with the Fermi level position on the higher subband slope. The lower energy e g set (xy and 3z 2r 2 orbitals) have occupancies significantly larger than 1/2 with typically metallic spectral functions. The article is published in the original.  相似文献   

19.
Pavlov  N. S.  Shein  I. R.  Pervakov  K. S.  Nekrasov  I. A. 《JETP Letters》2023,117(1):61-67
JETP Letters - A comparative analysis of the electronic structure obtained in the DFT/LDA and LDA + DMFT approaches of the possible isostructural analogues of iron superconductors InCo2As2 and...  相似文献   

20.
许英  曾雉 《中国物理快报》2007,24(1):184-186
The spinel structure LiV2O4 is studied by local density approximation (LDA) as well as including strong correlation correction potential, i.e. the LDA+U scheme, which concerns the strongly correlated interaction. With LDA, the orbitals of V 3d and O 2p are well separated so that it presents purely metallic heavv fermion behaviour. The total energy of ferromagnetic phase is slightly lower than that of paramagnetic phase within the LDA ap- proach. This implies that the ferromagnetic instability as a consequence of spin frustrated magnetism can be observed in experiments. The strong correlation interaction by using LDA+U enhances the exchange splitting. The heavy-fermion feature can be derived from the sharp peak around the Fermi level from the density of states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号