首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self-assembly and the formation of "Blackberry" type supramolecular structures for a type of Yttrium-containing polyoxometalate (K 15Na 6(H 3O) 9[(PY 2W 10O 38) 4(W 3O 14)].9H 2O, or {P 4Y 8W 43}) macroanions is characterized by using static and dynamic light scattering techniques. {P 4Y 8W 43} macroions are found to form hollow, spherical, single-layer "blackberry" structures in water and water-acetone mixed solvents. Very interestingly, the blackberry size can be accurately controlled by either changing acetone content in water-acetone mixed solvents, or by changing solution pH in aqueous solution. The blackberry size increases with decreasing pH (lower charge density) or higher acetone content in the mixed solvent (lower dielectric constant) and the blackberry size can change in responding to the change of external conditions. This indicates that the {P 4Y 8W 43} macroanions possess the properties of both "strong electrolyte type" and "weak electrolyte type" macroions, as we outlined previously. This is due to the special chemical feature of such clusters, which can be treated as Na 2HPO 4-type electrolytes in solution. The kinetics of the blackberry formation can be controlled by temperature.  相似文献   

2.
A complete, continuous transition from discrete macroions to blackberry structures, and then back to discrete macroions, is reported for the first time in the system of {Mo132}/water/acetone, with {Mo132} (full formula (NH4)42[Mo132O372(CH3COO)30(H2O)72].ca.300H2O.ca.10CH3COONH4) as the C60-like anionic polyoxomolybdate molecular clusters. Laser light scattering studies reveal the presence of the self-assembled {Mo132} blackberry structures in water/acetone mixed solvents containing 3 vol % to 70 vol % acetone, with the average hydrodynamic radius (Rh) of blackberries ranging from 45 to 100 nm with increasing acetone content. Only discrete {Mo132} clusters are found in solutions containing <3 vol % and >70 vol % acetone. The complete discrete macroion (cluster)-blackberry-discrete macroion transition helps to identify the driving forces behind the blackberry formation, a new type of self-assembly process. The charge density on the macroions is found to greatly affect the blackberry formation and dissociation, as the counterion association is very dominant around blackberries. The transitions between single {Mo132} clusters and blackberries, and between the blackberries with different sizes, are achieved by only changing the solvent quality.  相似文献   

3.
We report an interesting phenomenon in the NaCl-containing aqueous solution of {Mo72Fe30} macroions, where dissolution and precipitation processes of hydrophilic macroions automatically and subsequently occur without changing external conditions or chemical reactions. Our previous work indicates that {Mo72Fe30} macroions tend to slowly self-assemble into single-layer, vesicle-like "blackberries". Such macroions have two solute states in solutions: the entropy-favored general state (homogeneous distribution) and the free-energy favored second solute state (blackberries). With additional salts, the originally stable blackberries become less stable due to their shortened screening length, and they tend to further aggregate and precipitate at much lower concentrations. Therefore, in such a solution, we can observe a subsequent process: crystal solids --> homogeneous single macroion solution --> homogeneous blackberry solution --> precipitates containing noncrystalline solids. In other words, we observed the behaviors of both soluble inorganic ions and colloids in the same solution due to the unique features of the macroions. Static and dynamic laser light scattering, as well as AFM measurements, were used to characterize both the macroionic solutions and the precipitates.  相似文献   

4.
We report the study on the unique driving forces of the self-assembly of fully hydrophilic, soluble {Mo72Fe30} macroanions into single-layer, vesicle-like "blackberry" structures in water and mixed solvents. The hydrophobic interaction that is responsible for the vesicle formation of amphiphilic surfactants does not contribute to the current blackberry formation because of the absence of hydrophobic moiety. The hydrogen bond, van der Waals force, and chemical interaction only play minor roles. Laser light scattering and conductance measurements on a series of {Mo72Fe30}/ethanol/H2O solutions show that a certain amount of negative charges are necessary for the self-assembly, clearly indicating the existence of long-range attraction between macroanions, presumably due to the small counterions in between. The experimental results suggest that the charges on macroanions play a dual effect: short-range electrostatic repulsion and long-range "like-charge attraction", which is the major source of attractive force between hydrophilic macroanions, while van der Waals force, hydrogen bonds, and temporary inter-{Mo72Fe30} Fe-O-Fe chemical linking may also have minor contributions.  相似文献   

5.
This article reports the use of simple conductivity measurements to explore the state of small counter-ions (mostly NH 4 + and Na+) in $[\hbox{As}^{\rm III}_{12}\hbox{Ce}^{\rm III}_{16}(\hbox{H}_2\hbox{O})_{36}\hbox{W}_{148}\hbox{O}_{524}]^{76-} (\{\hbox{W}_{148}\})$ and $[\hbox{Mo}_{132}\hbox{O}_{372}(\hbox{CH}_{3}\hbox{COO})_{30} (\hbox{H}_{2}\hbox{O})_{72}]^{42-} (\{\hbox{Mo}_{132}\})$ macroanionic solutions. All the solutions are dialyzed to remove the extra electrolytes. Conductivity measurements on {(NH4)70Na6W148} and {(NH4)42Mo132} solutions at different concentrations both before and after dialysis indicate that the state of counter-ions has obvious concentration dependence. The “counter-ion association” phenomenon, that is, some small counter-ions closely associate with macroanions and move together, has been observed in both types of macroionic solutions above certain concentration. The association of counter-ions in hydrophilic macroionic solutions provides support on our previous speculation that the counter-ions might be responsible for the unique self-assembly of such macroanions into single-layer blackberry-type structures.  相似文献   

6.
The self-assembly behavior of polyoxometalate (POM) macroanion-capped 3-nm-radius Pd (0) nanoparticles in aqueous solution is reported. Pd(0) nanoparticles are synthesized from reducing K(2)PdCl(4) by using Dawson-type V-substituted POM K(9)[H(4)PV (IV)W(17)O(62)] (HPV(IV)) clusters as the reductant and stabilizer simultaneously in acidic aqueous solutions. The starting molar ratio of K(2)PdCl(4) to HPV(IV) (R value) in solution is important to the formation of Pd nanoparticles. When R < 0.6, approximately 20-nm-radius Pd(0) colloidal nanocrystals are formed. When R > or = 0.6, HPV-capped (and therefore negatively charged) 3-nm-radius Pd(0) nanoparticles are formed, which can further self-assemble into stable, hollow, spherical, 30-50-nm-radius supramolecular structures in solution without precipitation, as confirmed by light scattering and transmission electron microscopy studies. This structure resembles the unique supramolecular structure formed by hydrophilic POM macroanions in polar solvents, which we refer to as "blackberry" structures. It is the first evidence that the blackberry formation can occur in hydrophobic nanoparticle systems when the surface of nanoparticles is modified to be partially hydrophilic. Counterions play an important role in the self-assembly of Pd nanoparticles, possibly providing an attractive force for blackberry formation, which is the case for blackberry formation in POM macroanionic solutions. Our results suggest that the blackberry formation is not a specific property of POM macroions but most likely a general phenomenon for nanoparticles with relatively hydrophilic surfaces and suitable sizes and charges in a polar solvent.  相似文献   

7.
Static and dynamic laser light scattering techniques are used to monitor the slow self-assembly of 2.5-nm-diameter, hollow spherical, fully hydrophilic heteropolyoxometalate {Mo72Fe30} macro-ions into single-layer vesicle-like "blackberries" (averaging approximately 50-60 nm in diameter) in dilute salt-free and salt-containing aqueous solutions, to obtain the thermodynamic properties of the unique self-assembly. A very high activation energy is observed during the transition from the single ion (general solute state) to blackberries (so-called "second solute state"), which might be responsible for the interestingly slow self-assembly process in dilute solutions. The thermodynamic parameters of the blackberry formation can be affected by adding simple electrolytes into the solution, because the electrostatic interactions are responsible for the unique self-assembly, and the effects of various anions and cations (in the low salt concentration regimes) are discussed. Multivalent anions make the single {Mo72Fe30} macro-ions more stable and make the blackberry formation more difficult. Small cations carrying more charges tend to accelerate the self-assembly process. This is the first study on the thermodynamic properties of the novel self-assembly in dilute solutions and the equilibrium and transition between the two solute states of macro-ions in solution.  相似文献   

8.
The behavior in dilute solution of phosphate‐functionalized γ‐cyclodextrin macroanions with eight charges on the rim was explored. The hydrophilic macroions in mixed solvents show strong attraction between each other, mediated by the counterions, and consequently self‐assemble into blackberry‐type hollow spherical structures. Time‐resolved laser light scattering (LLS) measurements at high temperature ruled out the possibility of hydrogen bonding as the main driving force in the self‐assembly and indicated the good thermodynamic stability of assemblies regulated by the charge. The transition from single macroions to blackberries can be tuned by adjusting the content of organic solvent. The sizes of blackberries vary with the charge density of γ‐cyclodextrin by adjusting pH. It is the first report that pure cyclodextrins can generate supramolecular structures by themselves in dilute solution. The unique solution behavior of macroions provides a new opportunity to assemble cyclodextrin into functional materials and devices.  相似文献   

9.
The pH-controlled assembly/disassembly of a nanoscale {P4W52O178}24- cluster at pH 2 to a {P4W44O152}20- cluster at pH 3-5 via a {P3W39O134}19- cluster species at pH 2-3 to finally give {P2W19O69(OH2)}14- at pH 6 is reported. This process can be traced in the solid state crystallographically and in solution using dynamic light scattering studies.  相似文献   

10.
In this communication we report the unprecedented spontaneous self-assembly of cationic nanoporous metal-organic coordination cages (nanocages) into giant hollow vesicle-like structures in polar solvents. Such highly soluble nanocages (macrocations) have separated hydrophobic regions. However, their assembly is not due to hydrophobic interactions but the counterion-mediated attractions, very similar to the unique self-assembly of polyoxometalate macroanions into single-layer, spherical blackberry structures, as characterized by laser light scattering and TEM studies. This is the first study on the solution behavior of metal-organic nanocages and also the first report on the self-assembly of soluble macrocations. Therefore, the blackberry structure is likely to be a universal type of self-assembly for soluble macroions. In addition, the self-assembled nanocages can provide blackberry structures a wide range of organic functionalities that are impossible to reach with purely inorganic systems, which may open the door to many types of applications.  相似文献   

11.
A combination of scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) techniques have been performed on the wheel-shaped [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- and the ball-shaped [{Sn(CH3)2(H2O)}24{Sn(CH3)2}12(A-PW9O34)12]36- deposited on highly oriented pyrolytic graphite surfaces. Small, regular molecule clusters, as well as separated single molecules, were observed. The size of the molecules is in agreement with the data determined by X-ray crystallography. In STS measurements, we found a rather large contrast at the expected location of the Cu metal centers in our molecules, i.e., the location of the individual Cu ions in their organic matrix is directly addressable by STS.  相似文献   

12.
The self‐assembly of semiglobular, positively charged poly(propyleneimine) (PPI) dendrimers with small monovalent counterions (e.g., Cl?) in water/acetone mixtures was investigated. We showed that PPI dendrimers can assemble into hollow, spherical, single‐layered blackberry‐type structures mediated by the presence of monovalent counterions. The effects on the assembly of changing the solvent polarity and adjusting the pH were further investigated to confirm the presence of electrostatic interactions and hydrogen bonding as the driving forces. Results showed that PPI dendrimers form stable, hollow spheres in 5–20 % v/v acetone/water and that the size of the spheres decreases monotonically as the solvent polarity and/or the charge on the dendrimers (i.e., lower solution pH) increases. This is the first example to show that small monovalent counterions can trigger attraction among PPI dendrimers (or broadly defined polyelectrolytes) that is strong enough to bring them together to form large, stable supramolecular assemblies, which indicates that these organic macroions have similar solution behavior to more‐well‐defined inorganic molecular macroions.  相似文献   

13.
The solution behavior of the largest inorganic acid known thus far, the neutral, spherical iron/molybdenum/oxide nanocluster {Mo72Fe30} ([triple bond{(MoVI) MoVI5}12FeIII30 1a), including the pH-controlled deprotonation, is reported. The acidic properties are due to the 30 peripheral, weakly acidic FeIII(H2O) groups that form a unique Archimedean solid with all edges and dihedral angles being equal, the icosidodecahedron, and therefore an "isotropic" surface. Interestingly, the aqueous solutions are stable even for months because of the inertness of the spherical solutes and the presence of the hard FeIII and MoVI centers. The stability can be nicely proven by the very characteristic Raman spectrum showing, because of the (approximately) icosahedral symmetry, only a few lines. Whereas the {Mo72Fe30} clusters exist as discrete, almost neutral, molecules in aqueous solution at pH < 2.9, they get deprotonated and self-associate into single-layer blackberry-type structures at higher pH while the assembly process (i.e., the size of the final species) can be controlled by the pH values; this allows the deliberate generation of differently sized nanoparticles, a long-term goal in nanoscience. The average hydrodynamic radius (Rh) of the self-assembled structures decreases monotonically with increasing number of charges on the {Mo72Fe30} macroanions (from approximately 45 nm at pH approximately 3.0 to approximately 15 nm at pH approximately 6.6), as studied by laser light scattering and TEM techniques. The {Mo72Fe30} macroions with high-stability tunable charges/surfaces, equal shape, and masses provide models for the understanding of more complex polyelectrolyte solutions while the controllable association and dissociation reported here of the assembled soft magnetic materials with tuneable sizes could be interesting for practical applications.  相似文献   

14.
Ng MT  Vittal JJ 《Inorganic chemistry》2006,45(25):10147-10154
(Et3NH)[In(SeC{O}Ph)4].H2O (1) along with heterobimetallic and polymeric metal selenocarboxylates, namely [NaGa(SeC{O}Ph)4] (2), [K(MeCN)2Ga(SeC{O}Ph)4] (3), [NaIn(SeC{O}Ph)4] (4), [K(MeCN)2In(SeC{O}Ph)4] (5), [(Ph3P)2CuIn(SeC{O}Ph)4].CH2Cl2 (6), and [(Ph3P)2AgIn(SeC{O}Ph)4].CH2Cl2 (7), have been synthesized by incorporating either alkali metal ions (Na+ and K+) or group 11 metal ions (Cu(I) and Ag(I)) into the [M(SeC{O}Ph)4]- anion. Crystal structures determined by X-ray crystallography indicate that 3 and 5 have one-dimensional coordination polymeric structures while 6 and 7 have an M(mu-Se)2In (M = Cu, Ag) core. The thermal decomposition of these compounds except 4 lead to the formation of the corresponding metal selenides as confirmed by thermogravimetric analysis and in some cases by powder X-ray diffraction studies.  相似文献   

15.
A number of polycrystalline copper(I) O,O'-dialkyldithiophosphate cluster compounds with Cu4, Cu6, and Cu8 cores were synthesized and characterized by using extended X-ray absorption fine-structure (EXAFS) spectroscopy. The structural relationship of these compounds is discussed. The polycrystalline copper(I) O,O'-diisobutyldithiophosphate cluster compounds, [Cu8{S2P(OiBu)2}6(S)] and [Cu6{S2P(OiBu)2}6], were also characterized by using 31P CP/MAS NMR (CP = cross polarization, MAS = magic-angle spinning) and static 65Cu NMR spectroscopies (at different magnetic fields) and powder X-ray diffraction (XRD) analysis. Comparative analyses of the 31P chemical-shift tensor, and the 65Cu chemical shift and quadrupolar-splitting parameters, estimated from the experimental NMR spectra of the polycrystalline copper(I) cluster compounds, are presented. The adsorption mechanism of the potassium O,O'-diisobutyldithiophosphate collector, K[S2P(OiBu)2], at the surface of synthetic chalcocite (Cu2S) was studied by means of solid-state 31P CP/MAS NMR spectroscopy and scanning electron microscopy (SEM). 31P NMR resonance lines from collector-treated chalcocite surfaces were assigned to a mixture of [Cu8{S2P(OiBu)2}6(S)] and [Cu6{S2P(OiBu)2}6] compounds.  相似文献   

16.
An organic-inorganic compound [Cu(2,2'-bpy)2][{Cu(2,2'-bpy)2}2W12O4o(H2)]·4H2O (Mr = 4048.00) was prepared from the hydrothermal reaction of Na2WO4·2H2O, CuCl2·2H2O,2,2'-bipyridine (2,2'-bpy) and H2O at 160 ℃ for 4 days. The compound crystallizes in the monoclinic system, space group P21/n with a = 18.9196(8), b = 20.4212(8), c = 21.8129(9)(A), β=96.992(3)°, V= 8365.0(6) (A)3, Dc= 3.214 g/cm3, Z = 4,μ(MoKα) = 17.269 mm-1 and F(000) = 7324.Of the 119837 total reflections, 17315 were unique (Rint = 0.0489). The final R = 0.0385 and wR =0.0770 for 11142 observed reflections with I > 2σ(I). Single-crystal X-ray diffraction reveals that the structure is composed of [{Cu(2,2'-bpy)2}2W12O40(H2)]2- anions, discrete [Cu(2,2'-bpy)2]2 cations and lattice water molecules, and the anion is made up of a {W12O40(H2)}6- α-Keggin core decorated with two {Cu(2,2'-bpy)2}2 groups through bridging oxygen atoms.  相似文献   

17.
Hydrothermal reactions of a vanadate source, an appropriate Cu(II) source, bisterpy and an organodiphosphonate, H2O3P(CH2)nPO3H2(n= 1-5), in the presence of HF, yielded a family of materials of the type oxyfluorovanadium/copper-bisterpy/organodiphosphonate. Under similar reaction conditions, variations in diphosphonate tether length n provided the one-dimensional [{Cu2(bisterpy)}V2F2O2{HO3PCH2PO3}{O3PCH2PO3}](1) and [{Cu2(bisterpy)}V2F4O4{HO3P(CH2)2PO3H}](3), the two-dimensional [{Cu2(bisterpy)}V2F2O2(H2O)2{HO3P(CH2)2PO3}2] x 2H2O (2 x 2H2O), [{Cu2(bisterpy)(H2O2}V2F2O2{O3P(CH2)3PO3}{HO3P(CH2)3PO3H}(4) and [{Cu2(bisterpy)}V4F4O4(OH)(H2O){HO3P(CH2)5PO3}{O3P(CH2)5PO3}] x H2O (9 x H2O) and the three-dimensional [{Cu2(bisterpy)}3V8F6O17{HO3P(CH2)3PO3}4]0.8H2O (5 x 0.8H2O), [{Cu2(bisterpy)}V4F2O6{O3P(CH2)4PO3}2](8) and [{Cu2(bisterpy)(H2O)}2V8F4O8(OH)4{HO3P(CH2)5PO3H}2{O3P(CH2)5PO)}3] x 4.8H2O (10 x 4.8H2O). In addition, two members of the oxovanadium/Cu2(bisterpy)/organodiphosphonate family [{Cu2(bisterpy)}V2O4{HO3P(CH2)3PO3}2](6) and [{Cu2(bisterpy)}3V4O8(OH)2{O3P(CH2)3PO3}2{HO3P(CH2)3PO3}2] x 5H2O (7 x 5H2O) cocrystallized from the reaction mixture which provided 5. The overall architectures reveal embedded substructures based on V/P/O(F) clusters, chains, networks, and frameworks. In contrast to the oxovanadium/Cu2(bisterpy)/ organodiphosphonate family, several of the materials of this study also exhibit the direct condensation of vanadium polyhedra to produce binuclear and/or tetranuclear building units.  相似文献   

18.
The reaction of Cu(ClO4)2.6-H2O and n-propylamine in methanol gives two high-nuclearity products of well-defined compositions. At amine concentrations greater than seven equivalents compared to copper ion concentration, the system fixes carbon dioxide from air to form the one-dimensional carbamate-bridged coordination polymer, {[Cu(mu2-O,O'-O2CNH(CH2)2CH3)(NH2(CH2)2CH3)3](ClO4)}n ({1-ClO4}n). Lower relative amine concentrations lead to the self-assembly of an octanuclear copper-amine-hydroxide cluster [Cu8(OH)10(NH2(CH2)2CH3)12]6+ (2). Both compounds exhibit unique structures: {1-ClO4}n is the first mu2-O,O'-mono-N-alkylcarbamate-linked coordination polymer and 2 is the largest copper-hydroxide-monodentate amine cluster identified to date. The crystal structures indicate that the size of the n-propyl group is probably crucial for directing the formation of these compounds. Magnetic susceptibility studies indicate very weak antiferromagnetic coupling for 1. The octanuclear cluster 2 displays slightly stronger net antiferromagnetic coupling, despite the presence of a number of Cu-O(H)-Cu angles below the value of about 97 degrees that would normally be expected to yield ferromagnetic coupling.  相似文献   

19.
Two new {P(8)W(48)} wheel-based compounds, Na(12)Li(16){[Cu(H(2)O)](2)[Cu(4)(OH)(4)(H(2)O)(8)](2)P(8)W(48)O(184)}·55H(2)O (1), and K(4)Na(24)Li(10){(MoO(2))(2)(P(8)W(48)O(184))}·61H(2)O (2) have been synthesized by a conventional aqueous solution method, and characterized by UV, IR, TG analysis, XPRD, (31)P NMR, XPS, single-crystal X-ray diffraction analyses, magnetic study and electrochemistry study. In compound 1, a wheel-type {P(8)W(48)} containing two {Cu(4)} clusters and two isolated Cu cations results in a 10-Cu-containing polyoxotungstate, which represents the first {P(8)W(48)}-based compound trapping two transition metal (TM) clusters in its inner cavity. Further, the polyoxoanion was connected by Na(+) and Li(+) cations into a 3D framework. Compound 2 is a 2-Mo-containing {P(8)W(48)}-based polyoxotungstate. Magnetic study indicates that antiferromagnetic interactions exist in compound 1.  相似文献   

20.
A unique trend in the binding affinity between cationic metal−organic cages (MOCs) and external counteranions in aqueous media was observed. Similar to many macroions, two MOCs, sharing similar structures but carrying different number of charges, self-assembled into hollow spherical single-layered blackberry-type structures through counterion-mediated attraction. Dynamic and static light scattering and isothermal titration calorimetry measurements confirm the stronger interactions among less charged MOCs and counteranions than that of highly charged MOCs, leading to larger assembly sizes. DOSY NMR measurements suggest the significance of thick hydration shells of highly charged MOCs, inhibiting the MOC-counterion binding and weakening the interaction between them. This study demonstrates that the greater role played by hydration shell on ion-pair formation comparing with charge density of MOCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号