首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gain flattening of the erbium doped fiber amplifier (EDFA) is one of the most important aspects in the EDFA which the gain is wavelength dependent. For the first time the limitation of EDFA gain optimizing for a 32-channel wavelength division multiplexing (WDM) systems is investigated and reported in this paper. In a 32-channel WDM system the most favorable flatness gain achieved was 23.16 ± 1.51 dB with an average noise figure of 5.70 dB. This outcome proposes that the method does not achieve a uniform spectral gain in a 32-channel WDM system that incorporates a bandwidth of around 25 nm. Based on the simulation results the intrinsic optimization of EDFA causes the poor SNR and peak signal power with great variation over a transmission distance of 480 km single mode fiber.  相似文献   

2.
Gain Flattened Erbium-Doped Fiber Amplifier Using Simple Equalizing Film   总被引:1,自引:0,他引:1  
A simple scheme using a piece of SiO2 with an equalizing film platted on one side to get flattened gain spectrum of EDFA is studied in this paper. The film works as an inter-stage wavelength-selective filter, it is optimized to place at the middle of the EDF to suppress the ASE light generated by the first piece of EDF and pre-emphasize the signals before they enter the second EDF at the same time. The simulating results of 8 WDM signals show pretty good performance of gain flatness and noise figure as well. It is a facile equalization scheme for wide-band WDM systems.  相似文献   

3.
The gain-flattened erbium-doped fiber amplifier (EDFA) is a key device for wavelength division multiplexing (WDM) modern optical network systems. A flat spectral gain EDFA has been achieved by controlling the doped fiber length and the pump power. The purpose of this paper is to study the variation of gain flattening over the temperature range from ?20 to +60 °C. The results obtained here indicate that gain flatness increases as temperature increases.  相似文献   

4.
A gain and gain-flatness improved L-band dual-pass Raman fiber amplifier (RFA) utilizing a photonic crystal fiber (PCF) as gain medium is demonstrated. By introducing complementary gain spectra of typical forward and backward pumping single-pass RFA using the same PCF, we finally achieve average net gain level of 22.5 dB with a ±0.8 dB flattening gain in 20-nm bandwidth from 1595 nm to 1615 nm, which is rare in RFAs with only one single pump and no flattening filter. Compared with the single-pass pump configurations, gain level, flatness and bandwidth are greatly improved by using the dual-pass amplification configuration. The limitation of this configuration caused by multi-path interference (MPI) noise and stimulated Brillouin scattering (SBS) is also discussed.  相似文献   

5.
Chen H 《Optics letters》2005,30(6):619-621
A multiwavelength fiber ring laser obtained by use of a semiconductor optical amplifier (SOA) with a simple laser cavity configuration is reported. A Fabry-Perot filter was used in the fiber laser ring cavity to achieve more than 50 simultaneous wavelength lasing oscillations with a frequency separation of 50 GHz. The resulting stable broadband multiwavelength lasing operation was attributed to broadband and flat gain of the SOA, which has a gain flatness of 0.8 dB for more than 20 nm. The laser has a total output power of -3 dBm and a signal-to-spontaneous-noise ratio of 30 dB.  相似文献   

6.
巩稼民  赵云  冷斌 《应用光学》2014,35(2):353-358
针对光纤通信中密集波分复用系统各信道的在线平坦光放大这一光通信问题,提出利用级联高非线性光纤来设计增益平坦的拉曼光纤放大器。对高非线性光纤(As S光纤)拉曼增益谱前后沿进行线性拟合处理,利用不同波长泵浦抽运同种光纤,实现前放大后增益补偿,并考虑信号光损耗不同,在输出端得到了一个近似固定的功率输出值,并分析了影响拉曼光纤放大器输出特性的因素。模拟结果表明:平均增益为20.45 dB,增益平坦度为0.15 dB。  相似文献   

7.
We present the results of an investigation of optical gain and noise figure for simultaneous multi-channel amplification of an erbium doped fibre amplifier (EDFA) under optimized pump condition. Different pump configurations with varying input signal levels show interesting features on gain flatness. In the experiment, population inversion along the fibre length which determines the gain-spectra and noise characteristics of the amplifier is adjusted through optimized fibre length and injected pump power in order to minimize the gain-tilt at C-band. It is observed that bi-directional pumping manifests the best combination of low noise and high gain of EDFA which are useful as in-line repeaters in WDM network. We obtain 30 ± 1.5 dB intrinsically flat small signal gain from 1538 nm to 1558 nm band of wavelength with noise figure <4 dB for 16-channel simultaneous amplification in a single stage EDFA without gain flattening filter.  相似文献   

8.
This is a study on the design of variable gain-flattened erbium-doped fiber amplifier operating in L-band transmission window. Four amplifiers divided into five stages became the basis of the design with distributed pumping configuration. A dispersion compensating module was incorporated into the architecture as a way to combat dispersion. The amplifier was able to generate variable gain from 15 up to 30 dB under different input signal powers with a maximum output power of 23 dBm. Excellent gain flatness averaging around 0.8 dB was accomplished while four-wave mixing effect was significantly reduced.  相似文献   

9.
Stimulated Raman amplification of optically carried microwave signals in optical fibers is experimentally investigated. In the backward configuration which is shown to be less noisy than the forward one, net amplification factors larger than 20 dB are demonstrated in the low signal regime with better relative intensity noise (RIN) values than using erbium-doped-fiber amplifiers. Due to the RIN flatness with respect to the gain of the stimulated Raman amplifier high quality variable gain amplification of optically carried microwave signals could be implemented using optimized Raman amplifiers.  相似文献   

10.
We propose a simple and efficient approach to the design of 3-wavelength backward-pumped Raman amplifiers with increased gain flatness over a wide spectral band. Three different methods dealing with the optimization of one or two different simple parameters are studied. Various examples are provided for illustration, and the dependence of both amplifier gain and gain flatness with pump power is shown. Gain flatness in the spectral range of 1,520–1,595 nm of about 1 dB for a 7.5 dB gain and of 1.8 dB for a 13.5 dB gain is demonstrated using only three pumps with wavelengths within the 1,420–1,480 nm interval.  相似文献   

11.
In this paper, gain flatness is studied for simultaneous 16-ITU-T channel amplifications at C-band (1,532–1,558 nm) in a single stage EDFA for WDM application at different average inversion levels. The inversion levels are varied due to the change of the input signal levels from the targeted operating point and also for dropping few numbers of channels. Specially designed gain flattening filter (GFF) is used in order to get the flat gain with gain variation ±0.5 dB for −20 dBm/ch input signal power (total input signal power is −8.0 dBm) at a fixed average inversion level which is maintained by proper selection of optimum fibre length and pump power. A specific loss spectrum of GFF is obtained by writing a chirped fibre Bragg grating of length 20 mm. Gain variations are studied by changing the total input signal levels from −8.0 dBm to −20.0 dBm and maintained within 20.0 ± 0.5 dB by using automatic gain control (AGC) circuit. About 15 out of 16 channels are dropped and observed ± 0.5 dB gain-variation which is an important parameter in optical network system.  相似文献   

12.
In order to realize a high flattening C + L band amplified spontaneous emission (ASE) light output, a broadband source using just one 976 nm laser diode (LD) and two stages erbium-doped fibers (EDF) with the same concentration is proposed theoretically and demonstrated experimentally, and the theoretical analysis and experimental verification are presented in details. Firstly, based on the energy level of Er3+, the methods of realizing C + L band ASE output is presented. Then, the system configuration is designed. One 976 nm LD is used for pumping, and the pump light, which is divided into two parts by one coupler, is pumped into two EDFs by wavelength division multiplexer (WDM). A fiber loop mirror (FLM) is used to improve working efficiency. Meanwhile, an optical isolator is used to avoid the effect of reflected wavelength from output facet. Finally, based on the mathematical model of the ASE gain, the length of EDF is discussed as well. In the experiment, by optimizing the length of EDF1 and EDF2, a 0.12 m EDF1 and 16 m EDF2 are adopted. In the end, the flatness of the spectra from 1540 nm to 1610 nm is ±0.91 dB, and the flatness is ±1.65 dB during 1520–1610 nm without any filter. The high flattening C + L band ASE output is achieved by just one 976 nm LD, which can optimize system and reduce the cost as well.  相似文献   

13.
A broadband two-pump optical parametric amplifier with ultra-flat gain spectra is proposed in a single-section highly nonlinear fiber. By elaborately setting the dispersions and pump wavelength space, a gain over 250 nm with 0.02-dB uniformity is obtained. The pump polarizations and fiber length can be changed, achieving polarization-insensitive or higher gain, while the flatness and bandwidth of gain curve remain the same.  相似文献   

14.
为解决传统拉曼放大器增益系数低和增益不平坦的问题,采用级联光子晶体光纤的设计方法设计了一种增益平坦的拉曼光纤放大器.采用受激拉曼散射效应的稳态分析理论,分析了光子晶体光纤的拉曼增益谱,建立了拉曼放大器的理论模型.通过解耦合方程,推导了实现增益平坦的约束条件,发现光纤长度和泵浦功率是影响拉曼光纤放大器增益平坦度的两个参数.仿真结果表明,在1 508~1 544 nm的带宽范围内,实现了一个增益高达21 dB,增益平坦度仅为0.14 dB的光子晶体拉曼光纤放大器,可在光纤通信系统应用中发挥重要作用.  相似文献   

15.
We report on an improved configuration to monitor a passive optical network with high quality in service. This proposed system comprises fiber-Bragg gratings, a 1 × 4 optical switch, and an optical time-domain reflectometry to diagnose the broken point in real time. It could simultaneously detect multioptical network units in a WDM PON. The remote-pump integrated residual pumping reused function is implemented. Broken points in different optical paths can be detected simultaneously even when the distances to the central office are identical. The bit-error rate testing is verified with a small power penalty, making it an ideal solution for the real-time monitoring in a WDM PON.  相似文献   

16.
Optimization of gain flattened C-band erbium-doped fiber amplifier (EDFA) using a macrobending method with an improved gain flatness and bandwidth is demonstrated. The optimization for gain flatness and bandwidth was achieved by varying the bending radius and the length of the doped fiber. In the optimized condition, the gain saturation effect as well as the energy transfer from shorter wavelengths to longer wavelengths resulted in a flattened and broadened gain profile in the C-band region. The amplifier was optimized to a 9 m long erbium-doped fiber (EDF) with erbium ion concentration of 1100 ppm and bending radius of 6.5 mm. The gain variation of the EDFA is obtained within ±1 dB over 25 nm bandwidth of C-band region.  相似文献   

17.
In this paper, two stage hybrid optical amplifier (HOA) composed of a single erbium doped fiber amplifier and Raman amplifier is proposed for dense wavelength division multiplexed (DWDM) system and investigate the impact of reduced channel spacing. The performance has been evaluated in the term of gain, gain flatness and noise figure. Also, using gain equalization technique, hybrid optical amplifier that has a gain flatness of 3 dB, and a noise figure of less than 7.4 dB is observed.  相似文献   

18.
In view of the differential phase Q (DP-Q) and the traditional Q factor, we compared, using numerical simulations, the performances of the RZ-OOK and RZ-DPSK in dense OTDM-WDM systems. When signal pulse widths and optical filter bandwidths are optimized, there is no upper limit to the WDM channel bit rate (BR) in the purely linear back-to-back configuration. Here, RZ-DPSK performed increasingly better than RZ-OOK in a higher spectral density with Q gain increasing from 3 to 5 dB. In the nonlinear point-to-point configuration, a higher BR leads to increased performance penalties for both the RZ-DPSK and RZ-OOK, while the RZ-DPSK still outperforms RZ-OOK by up to 4 dB. The results obtained correlate with conventional results, indicating the potential of the DP-Q as a performance evaluation tool in numerical simulations.  相似文献   

19.
巩译  刘芳  孟繁轲 《应用光学》2022,43(5):1015-1021
基于铒/镱共掺光纤放大器(erbium-ytterbium doped fiber amplifier, EYDFA)的理论模型和受激拉曼散射效应的分析理论,利用EYDFA和拉曼光纤放大器(Raman fiber amplifier, RFA)的增益谱互补特性,研究并设计了EYDFA与二阶多泵浦RFA相结合的混合放大器结构。为了得到高增益和低平坦度的混合放大器,引入了粒子群算法优化泵浦光波长和功率。仿真结果表明:在不使用增益均衡器的条件下,所设计的混合光纤放大器在输出端得到了近似相等的输出光功率,在90 nm的带宽范围内平均增益为38.78 dB,增益平坦度为1.1 dB,为混合放大器的设计和优化提供了参考。  相似文献   

20.
A gain-clamped two-stage L-band EDFA is demonstrated by simply incorporating two different FBGs on both side of EDF in the second stage. It forms a FBG laser at 1560 nm to clamp the gain in the system. The gain is clamped at about 16.5 dB with gain variation of less than 1.0 dB at dynamic range up to −10 dBm. A flat gain is obtained over 30 nm of wavelength range from 1568 to 1598 nm with a gain variation of less than 1.1 dB. At the flat region, the noise figure varies from 5.0 to 5.8 dB, which is slightly higher compared to those of unclamped amplifier. The advantage of this technique is that the FBG laser does not disturb the WDM signals in the flat gain region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号