首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Nowadays, numerical models have great importance in every field of science, especially for solving the nonlinear differential equations, partial differential equations, biochemical reactions, etc. The total time evolution of the reactant species which interacts with other species is simulated by the Runge-Kutta of order four (RK4) and by Non-Standard finite difference (NSFD) method. A NSFD model has been constructed for the biochemical reaction problem and numerical experiments are performed for different values of discretization parameter h. The results are compared with the well-known numerical scheme, i.e. RK4. The developed scheme NSFD gives better results than RK4.  相似文献   

2.
We compare and investigate the performance of the exact scheme of the Michaelis–Menten (M–M) ordinary differential equation with several new nonstandard finite difference (NSFD) schemes that we construct using Mickens' rules. Furthermore, the exact scheme of the M–M equation is used to design several dynamically consistent NSFD schemes for related reaction‐diffusion equations, advection‐reaction equations, and advection‐reaction‐diffusion equations. Numerical simulations that support the theory and demonstrate computationally the power of NSFD schemes are presented. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

3.
In this note, a non‐standard finite difference (NSFD) scheme is proposed for an advection‐diffusion‐reaction equation with nonlinear reaction term. We first study the diffusion‐free case of this equation, that is, an advection‐reaction equation. Two exact finite difference schemes are constructed for the advection‐reaction equation by the method of characteristics. As these exact schemes are complicated and are not convenient to use, an NSFD scheme is derived from the exact scheme. Then, the NSFD scheme for the advection‐reaction equation is combined with a finite difference space‐approximation of the diffusion term to provide a NSFD scheme for the advection‐diffusion‐reaction equation. This new scheme could preserve the fixed points, the positivity, and the boundedness of the solution of the original equation. Numerical experiments verify the validity of our analytical results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

4.
This paper studies the stability properties of a nonstandard finite difference (NSFD) scheme used to simulate the dynamics of a mouse population model in hantavirus epidemics. It is shown that this difference scheme and the underlying system of differential equations have the same dynamics. The proof uses the fact that the total population obeys the logistic equation, as well as techniques from calculus, graphical analysis, and dynamical systems.  相似文献   

5.
We construct nonstandard finite-difference (NSFD) schemes that provide exact numerical methods for a first-order differential equation having three distinct fixed-points. An explicit, but also nonexact, NSFD scheme is also constructed. It has the feature of preserving the critical properties of the original differential equation such as the positivity of the solutions and the stability behavior of the three fixed-points.  相似文献   

6.
In this work, a class of nonstandard finite difference (NSFD) schemes are proposed to approximate the solutions of a class of generalized convection–diffusion–reaction equations. First, in the case of no diffusion, two exact finite difference schemes are presented using the method of characteristics. Based on these two exact schemes, a class of exact schemes are presented by introducing a parameter α. Second, since the forms of these exact schemes are so complicated that they are not convenient to use, a class of NSFD schemes are derived from the exact schemes using numerical approximations. It follows that, under certain conditions about denominator function of time‐step sizes, these NSFD schemes are elementary stable and the solutions are positive and bounded. Third, by means of the Mickens' technique of subequations, a new class of implicit NSFD schemes are constructed for the full convection–diffusion–reaction equations. It is shown that, under certain parameters set, these NSFD schemes are capable of preserving the non‐negativity and boundedness of the analytical solutions. Finally, some numerical simulations are provided to verify the validity of our analytical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1288–1309, 2015  相似文献   

7.
We provide effective and practical guidelines on the choice of the complex denominator function of the discrete derivative as well as on the choice of the nonlocal approximation of nonlinear terms in the construction of nonstandard finite difference (NSFD) schemes. Firstly, we construct nonstandard one-stage and two-stage theta methods for a general dynamical system defined by a system of autonomous ordinary differential equations. We provide a sharp condition, which captures the dynamics of the continuous model. We discuss at length how this condition is pivotal in the construction of the complex denominator function. We show that the nonstandard theta methods are elementary stable in the sense that they have exactly the same fixed-points as the continuous model and they preserve their stability, irrespective of the value of the step size. For more complex dynamical systems that are dissipative, we identify a class of nonstandard theta methods that replicate this property. We apply the first part by considering a dynamical system that models the Ebola Virus Disease (EVD). The formulation of the model involves both the fast/direct and slow/indirect transmission routes. Using the specific structure of the EVD model, we show that, apart from the guidelines in the first part, the nonlocal approximation of nonlinear terms is guided by the productive-destructive structure of the model, whereas the choice of the denominator function is based on the conservation laws and the sub-equations that are associated with the model. We construct a NSFD scheme that is dynamically consistent with respect to the properties of the continuous model such as: positivity and boundedness of solutions; local and/or global asymptotic stability of disease-free and endemic equilibrium points; dependence of the severity of the infection on self-protection measures. Throughout the paper, we provide numerical simulations that support the theory.  相似文献   

8.
In this paper, numerical solution of the Burgers–Huxley (BH) equation is presented based on the nonstandard finite difference (NSFD) scheme. At first, two exact finite difference schemes for BH equation obtained. Moreover an NSFD scheme is presented for this equation. The positivity, boundedness and local truncation error of the scheme are discussed. Finally, the numerical results of the proposed method with those of some available methods compared.  相似文献   

9.
In this paper, we transform a continuous-time predator-prey model with Beddington–DeAngelis functional response into a discrete-time model by nonstandard finite difference scheme (NSFD). The NSFD model shows complete dynamic consistency with its continuous counterpart for any step size. However, the discrete model of same continuous system obtained by Euler forward method shows dynamic inconsistency for larger step size. Extensive numerical simulations have been done to compare the dynamics of NSFD system and Euler system. Our analysis reveals that dynamics of NSFD model is independent of the step-size, whereas the dynamics of the standard discrete model completely depends on the step-size and produces spurious dynamics like chaos.  相似文献   

10.
In this paper, we use some finite difference methods in order to solve an atmospheric flow problem described by an advection–diffusion equation. This flow problem was solved by Clancy using forward‐time central space (FTCS) scheme and is challenging to simulate due to large errors in phase and amplitude which are generated especially over long propagation times. Clancy also derived stability limits for FTCS scheme. We use Von Neumann stability analysis and the approach of Hindmarsch et al. which is an improved technique over that of Clancy in order to obtain the region of stability of some methods such as FTCS, Lax–Wendroff (LW), Crank–Nicolson. We also construct a nonstandard finite difference (NSFD) scheme. Properties like stability and consistency are studied. To improve the results due to significant numerical dispersion or numerical dissipation, we derive a new composite scheme consisting of three applications of LW followed by one application of NSFD. The latter acts like a filter to remove the dispersive oscillations from LW. We further improve the composite scheme by computing the optimal temporal step size at a given spatial step size using two techniques namely; by minimizing the square of dispersion error and by minimizing the sum of squares of dispersion and dissipation errors.  相似文献   

11.
In this paper, a non-standard finite difference (NSFD) scheme for a delayed diffusive hepatitis B virus (HBV) infection model with intracellular HBV DNA-containing capsids is proposed. Dynamic consistency of this NSFD scheme is achieved by showing that the scheme preserves the non-negativity and boundedness of the solutions and the global stability of the homogeneous steady states of the corresponding continuous model without any restriction on spatial and temporal grid sizes. We prove the global stability of the steady states by constructing suitable discrete Lyapunov functions.  相似文献   

12.
In this article, by a nonstandard finite-difference (NSFD) scheme we study the dynamics of the delay differential equation with unimodal feedback. First, under three cases local stability of the equilibria is discussed according to Schur polynomial and Hopf bifurcation theory of discrete system. Then, the explicit algorithms for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived, using the normal form method and center manifold theorem. In Section 4, numerical example using Nicholson’s blowflies equation is provided to illustrate the theoretical results. Finally, it demonstrates significant superiority of nonstandard finite-difference scheme than Euler method under the means of describing approximately the dynamics of the original system.  相似文献   

13.
Among the typical time integrations for PDEs, Leap-frog scheme is the well-known method which can easily be used. A most welcome feature of the Leap-frog scheme is that it has very simple scheme and is easy to be implemented. The main purpose of this paper is to propose and analyze an improved Leap-frog scheme, the so-called continuous-stage modified Leap-frog scheme for high-dimensional semi-linear Hamiltonian wave equations. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Hamiltonian equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula (the Duhamel Principle). Then the continuous-stage modified Leap-frog scheme is formulated. Accordingly, the convergence, energy preservation, symplecticity conservation and long-time behaviour of explicit schemes are rigorously analysed. Numerical results demonstrate the remarkable advantage and efficiency of the improved Leap-frog scheme compared with the existing mostly used numerical schemes in the literature.  相似文献   

14.
The paper presents a new giving up smoking model for which interaction term is square root of potential and occasional smokers of model presented in Zaman (2011) [15]. First, we will show formulation of the model. Then we will discuss local and global stability of the model and its general solutions. The non-standard finite difference method (NSFD) is used to solve the new giving up smoking model. Both non-negativity and conservative law for differential equations system are discussed. Numerical results are presented graphically and compared well with those obtained by Runge–Kutta fourth-order method (RK4) and ODE45.  相似文献   

15.
A diffusion driven model for hepatitis B virus (HBV) infection, taking into account the spatial mobility of both the HBV and the HBV DNA-containing capsids is presented. The global stability for the continuous model is discussed in terms of the basic reproduction number. The analysis is further carried out on a discretized version of the model. Since the standard finite difference (SFD) approximation could potentially lead to numerical instability, it has to be restricted or eliminated through dynamic consistency. The latter is accomplished by using a non-standard finite difference (NSFD) scheme and the global stability properties of the discretized model are studied. The results are numerically illustrated for the dynamics and stability of the various populations in addition to demonstrating the advantages of the usage of NSFD method over the SFD scheme.  相似文献   

16.
This paper is concerned with the existence, stability, and global attractivity of time-periodic solutions for a class of coupled parabolic equations in a bounded domain. The problem under consideration includes coupled system of parabolic and ordinary differential equations, and time delays may appear in the nonlinear reaction functions. Our approach to the problem is by the method of upper and lower solutions and its associated monotone iterations. The existence of time-periodic solutions is for a class of locally Lipschitz continuous reaction functions without any quasimonotone requirement using Schauder fixed point theorem, while the stability and attractivity analysis is for quasimonotone nondecreasing and mixed quasimonotone reaction functions using the monotone iterative scheme. The results for the general system are applied to the standard parabolic equations without time delay and to the corresponding ordinary differential system. Applications are also given to three Lotka-Volterra reaction diffusion model problems, and in each problem a sufficient condition on the reaction rates is obtained to ensure the stability and global attractivity of positive periodic solutions.  相似文献   

17.
In this paper, we discretize a continuous-time eco-epidemiological model by non-standard finite difference (NSFD) scheme as well as standard Euler forward scheme. Dynamical properties of both the systems are explored and compared with their continuous-time model. We show that the solution of NSFD system remains positive for all positive initial values. Fixed points and their local stability properties are shown to be identical with that of the continuous model, indicating its dynamic consistency. Dynamics of the Euler model, however, depend on the step–size and therefore dynamically inconsistent. Solutions in this latter method may be negative and allows numerical instabilities, leading to chaos. Extensive numerical simulations have been performed to validate the theoretical results.  相似文献   

18.
False-diffusion errors in numerical solutions of convection-diffusion problems, in two- and three-dimensions, arise from the numerical approximations of the convection term in the conservation equations. For finite difference-based methods, one way to overcome these errors is to use an upwind approximation which essentially follows the streamlines. This approach, originally derived by Raithby is formally called the skew-upwind differencing scheme. Although this scheme shows promise and has proved to be more accurate than most others on a limited number of test problems, it does have some shortcomings. The method outlined in this paper retains the general objectives of the Raithby approach, but uses an entirely different formulation that eliminates the shortcomings of the original scheme. The paper describes the formulation of the proposed method, and demonstrates its performance on a standard test problem. A comparison with other schemes is also given. The results indicate that the new scheme has potential for minimizing false-diffusion in finite-difference based approaches for convection-diffusion problems.  相似文献   

19.
A new conservation theorem   总被引:2,自引:0,他引:2  
A general theorem on conservation laws for arbitrary differential equations is proved. The theorem is valid also for any system of differential equations where the number of equations is equal to the number of dependent variables. The new theorem does not require existence of a Lagrangian and is based on a concept of an adjoint equation for non-linear equations suggested recently by the author. It is proved that the adjoint equation inherits all symmetries of the original equation. Accordingly, one can associate a conservation law with any group of Lie, Lie-Bäcklund or non-local symmetries and find conservation laws for differential equations without classical Lagrangians.  相似文献   

20.
A method for computing symmetries and conservation laws of integro-differential equations is proposed. It resides in reducing an integro-differential equation to a system of boundary differential equations and in computing symmetries and conservation laws of this system. A geometry of boundary differential equations is constructed like the differential case. Results of the computation for the Smoluchowski's coagulation equation are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号