首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A frequency-domain based system for measuring acoustic impedance and reflection coefficient is described. The calibration procedure uses a least-mean-squares approximation to the Thevenin parameters describing the source and receiver characteristics in which the data measured on closed, cylindrical tubes are matched to a viscothermal tube model. The system is intended for use in acoustical measurement in human ear canals, in which the cross-sectional area of the ear canal at the point of insertion is imprecisely known. This area is acoustically estimated from the impedance data, and the reflection coefficient is calculated in terms of this area and the impedance data. Measurements on a variety of closed tubes show the method is accurate over the frequency range investigated (less than 10.7 kHz). The time-domain reflection function is evaluated by transforming the reflection coefficient from the frequency domain, but the finite bandwidth of the measured data limits the accuracy of time-domain response measurements. The method is well suited for frequency-domain measurements in human ear canals.  相似文献   

2.
Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 degrees C and 45 degrees C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278 +/- 1.5 cm/s-degrees C) and lowest for perfluorodichlorooctane (-222 +/- 0.9 cm/s-degrees C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.  相似文献   

3.
The absorption coefficient of acoustic materials can be measured either in the frequency or the time domain. At normal incidence, a sample of the material is fitted within an impedance tube and the absorption coefficient is calculated in the frequency domain from the measurement of the transfer function between two microphones [ISO 10534-2. Acoustics - determination of sound absorption coefficient and impedance in impedance tubes - Part 2: transfer function method. ISO, Geneva, Switzerland; 1996]. When the acoustic material must be characterized at oblique incidence or in situ (noise barriers, for instance) the absorption coefficient is calculated from measurements of the loudspeaker-microphone impulse response in the time domain, both in free field and in front of the sample [CEN/TS 1793-5. Road traffic noise reduction devices - test method for determining the acoustic performance - Part 5: intrinsic characteristics - in situ values of sound reflection and airborne sound insulation. CEN, Brussels, Belgium; 2003, ISO 13472-1. Acoustic measurement of sound absorption properties of road surfaces in situ - Part I: extended surface method. ISO, Geneva, Switzerland; 2002]. Since the absorption is an intrinsic property of the acoustic material, its measurement in either domain must provide the same result. However, this has not been formally demonstrated yet. The aim of this paper is to carry out a comparison between the absorption coefficient predicted by the impedance model of a Microperforated Insertion Unit and the absorption coefficient predicted from a simulated reflection trace taken into account the finite length of the time window.  相似文献   

4.
党可征  时家明  李志刚  孟祥豪  王启超 《物理学报》2015,64(11):114101-114101
为进一步提高传统Salisbury屏的吸波性能, 本文提出了利用高阻抗表面在特定频率同相反射的特性, 替代原有结构中的金属平板设计多频带Salisbury屏的方法. 通过分析不同频率电磁波经高阻抗表面反射后空间电磁场的场强分布, 说明可以通过共用Salisbury屏的损耗层, 在高阻抗表面同相反射的特征频率附近引入新的吸收带. 以不同尺寸方形周期结构的单频和双频高阻抗表面为例, 从仿真和实验两个方面验证了多频带Salisbury屏设计的可行性, 且实验和仿真结果十分符合. 结果表明, 多频带Salisbury屏基本保留了原有的吸波性能, 同时又引入了新的吸收峰, 吸收峰的位置和数量与高阻抗表面同相反射的频带位置和数目有关. 与传统的Salisbury屏相比, 在材料增加厚度不足1 mm 的情况下, 多频带Salisbury屏的设计使反射率小于-10 dB的吸波带宽由8.5 GHz增加到10.1 GHz, 且实现了向长波方向的拓展, 最低频率由7.5 GHz拓展到5.98 GHz.  相似文献   

5.
Time-resolved optical reflection microscopy studies demonstrate spatiotemporal dynamics of melting and ablation of graphite surface molten by single IR femtosecond laser pulses, which are revealed by monitoring picosecond oscillations of the probe reflectivity modulated by transient acoustic reverberations in the surface melt. Temporal periods and amplitudes of the reverberations are affected through transient variations of melt thickness and acoustic impedance by melting, thermal expansion, spallation and fragmentation processes, thus enabling quantitative evaluation of their contributions and basic parameters.  相似文献   

6.
Three methods are discussed: an automated pulse tube system; a direct, point measurement technique; and the application of a parametric array for oblique angle measurement.The first of these extends the capability of a proven impedance measurement technique using a waterborne acoustic waveguide (pulse tube). Data obtained in a frequency range 3 to 100 kHz, determined from complex reflection coefficients, are presented, via a transfer function analyser interfacing with a computer and plotter, to produce impedance diagrams.A direct, point impedance technique based on sensing particle velocity, or displacement of a surface and associated acoustic pressure is next discussed. Use is made of laser interferometry to measure the vector quantity, while scalar values are determined from a pressure sensor. This data affords a direct measurement of point impedance and can be applied in obtaining complex response information from heterogeneous materials or structures.The last method employs a non-linear acoustic device to obtain a requisite acoustic beam-width allowing characterization of materials at oblique angles, with samples of limited size, at low ultrasonic frequencies.  相似文献   

7.
光纤Bragg光栅水听器探头的特性及实验研究   总被引:2,自引:0,他引:2  
论述了FBG水听器探头基元——光纤Bragg光栅(FBG)的传感特性,分析了FBG的耦合系数、反射率、反射带宽和栅长对FBG水听器传感特性的影响。通过改进FBG水听器探头封装结构,增加了其压力敏感系数。并将实验结果与标准水听器(压电型)比较,标定出FBG的声压灵敏度,在1~25KHz的声波检测范围,其响应平坦度好、信号输出稳定,改进措施是有效的。  相似文献   

8.
北极海冰阻碍了海水和空气两个空间的信息传输。为获得冰层对水下声信号跨冰层传输的影响,采用三维检波器在北冰洋中心区开展了水下声信号的跨冰层实验。利用水冰界面反射模型和自由冰层Lamb波模型,对水下声信号小角度(小于10°)入射冰层时测量数据进行分析,结果表明:(1)20 Hz~1 kHz声信号入射到光滑冰层时,某些频率声波的反射率会明显降低,其中93%的反射率低点超过-10 dB,有的甚至会达到-20 dB以上。(2)冰层反射率低点对应的频段声波,能被冰层上方检波器接收到,并显示出较强的合振速谱,且与该站位自由冰层模型中同时产生的A2和S2模态Lamb波在频段上相符。这些结果可为跨冰层水声信号拾取和水声传播研究提供参考。   相似文献   

9.
The frequency scanning ultrasonic pulse echo reflectometer (FSUPER) is a device which can be used to measure the ultrasonic velocity, attenuation coefficient and specific acoustic impedance of liquid samples as a function of frequency (0.3–6 MHz).  相似文献   

10.
In this paper, an acoustic shear impedance model is employed to obtain a relation between the viscosity of a Newtonian fluid and phase characteristics of ultrasonic shear wave reflection from a solid-fluid interface. The phase and magnitude of the reflection coefficient can be decoupled in this model. The decoupling allows an independent relation between the acoustic shear impedance (viscosity-density product) and phase of the reflection coefficient. The model was experimentally verified for different fluid-solid combinations. Comparison of the results with the commonly used absolute reflection coefficient method demonstrates that phase measurement provides improved measurements.  相似文献   

11.
Voice training techniques often make use of exercises involving partial occlusion of the vocal tract, typically at the anterior part of the oral cavity or at the lips. In this study two techniques are investigated: a bilabial fricative and a small diameter hard-walled tube placed between the lips. Because the input acoustic impedance of the vocal tract is known to affect both the shaping of the glottal flow pulse and the vibrational pattern of the vocal folds, a study of the input impedance is an essential step in understanding the benefits of these two techniques. The input acoustic impedance of the vocal tract was investigated theoretically for cases of a vowel, bilabial occlusion (fully closed lips), a bilabial fricative, and artificially lengthening the tract with small diameter tubes. The results indicate that the tubes increase the input impedance in the range of the fundamental frequency of phonation by lowering the first formant frequency to nearly that of the bilabial occlusion (the lower bound on the first formant) while still allowing a continuous airflow. The bilabial fricative also has the effect of lowering the first formant frequency and increasing the low-frequency impedance, but not as effectively as the extension tubes.  相似文献   

12.
The causality condition is examined as a means of determining frequency-domain information about a submerged object from a partial knowledge of its acoustic reflection characteristics. A one-dimensional problem is considered in which an acoustic wave reflects from an object that is described by the impedance it presents to the fluid. Two new applications of the causality condition to the frequency-domain analysis of this problem are investigated and illustrated by numerical examples. In each application, the causality condition is used to find the object's complex impedance from a knowledge of the reflected wave's magnitude. The first application is to experimental studies where one desires a knowledge of an object's complex impedance but practical limitations only allow a measurement of the reflected wave amplitude. Analysis shows that the causality condition may be used to determine the phase of the reflected wave, and hence the object's impedance, if the reflection coefficient is minimum phase. When this is true, examples suggest that the phase of the reflection coefficient may be accurately determined from the causality condition even in the presence of noise and band-limited data. The second application is to design situations, where one wishes to create an object that reflects sound with a specified frequency-dependent magnitude. The causality condition may aid the designer by providing a knowledge of all causal object impedances that produce the same reflection coefficient magnitude. A numerical example is presented in which a variety of causal object impedances produce the same reflection coefficient magnitude over an infinite frequency range.  相似文献   

13.
Accurate duct acoustic propagation models are required to predict and reduce aircraft engine noise. These models ultimately rely on measurements of the acoustic impedance to characterize candidate engine nacelle liners. This research effort increases the frequency range of normal-incidence acoustic impedance testing in square ducts by extending the standard two-microphone method (TMM), which is limited to plane wave propagation, to include higher-order modes. The modal decomposition method (MDM) presented includes four normal modes in the model of the sound field, thus increasing the bandwidth from 6.7 to 13.5 kHz for a 25.4 mm square waveguide. The MDM characterizes the test specimen for normal- and oblique-incident acoustic impedance and mode scattering coefficients. The MDM is first formulated and then applied to the measurement of the reflection coefficient matrix for a ceramic tubular specimen. The experimental results are consistent with results from the TMM for the same specimen to within the 95% confidence intervals for the TMM. The MDM results show a series of resonances for the ceramic tubular material exhibiting a monotonic decrease in the resonant peaks of the acoustic resistance with increasing frequency, resembling a rigidly-terminated viscous tube, and also evidence of mode scattering is visible at the higher frequencies.  相似文献   

14.
In a previous study [J. Acoust. Soc. Am. 108, 1290 (2000)] the acoustic impedance difference between intercostal tissue and lung was evaluated as a possible explanation for the enhanced lung damage with increased hydrostatic pressure, but the hydrostatic-pressure-dependent impedance difference alone could not explain the enhanced occurrence of hemorrhage. In that study, it was hypothesized that the animal's breathing pattern might be altered as a function of hydrostatic pressure, which in turn might affect the volume of air inspired and expired. The acoustic impedance difference between intercostal tissue and lung would be affected with altered lung inflation, thus altering the acoustic boundary conditions. In this study, 12 rats were exposed to 3 volumes of lung inflation (inflated: approximately tidal volume; half-deflated: half-tidal volume; deflated: lung volume at functional residual capacity), 6 rats at 8.6-MPa in situ peak rarefactional pressure (MI of 3.1) and 6 rats at 16-MPa in situ peak rarefactional pressure (MI of 5.8). Respiration was chemically inhibited and a ventilator was used to control lung volume and respiratory frequency. Superthreshold ultrasound exposures of the lungs were used (3.1-MHz, 1000-Hz PRF, 1.3-micros pulse duration, 10-s exposure duration) to produce lesions. Deflated lungs were more easily damaged than half-deflated lungs, and half-deflated lungs were more easily damaged than inflated lungs. In fact, there were no lesions observed in inflated lungs in any of the rats. The acoustic impedance difference between intercostal tissue and lung is much less for the deflated lung condition, suggesting that the extent of lung damage is related to the amount of acoustic energy that is propagated across the pleural surface boundary.  相似文献   

15.
This paper deals with the effect of the temperature and the frequency on the acoustic behavior of lined duct partially treated with usual material used in acoustic insulation.First, the effect of frequencies and temperature on the acoustic impedance of usual materials used in lined duct such as glass or rock wools in order to reduce acoustic level is investigated.Secondly, the variational formulation of the acoustic duct problem taking into account velocity and temperature effects is established. Then, a numerical model is derived which permits to compute the reflection and the transmission coefficients of such duct for different temperatures and several flow velocities. The acoustic power attenuation is then computed from these coefficients and the effect of the temperature and flow velocities on this energetic quantity is evaluated.The numerical results are obtained for three configurations of a lined duct treated for different temperature ranges and several velocities. Numerical coefficients of transmission and reflection as well as the acoustic power attenuation show the relative influence of temperature.  相似文献   

16.
The properties of an acoustic object represented by a multichannel long line of the flexural type are considered. Analytical formulas are obtained for the basic acoustic characteristics of a multichannel long line with an arbitrary number of flexurally oscillating single lines constituting it: the input impedance, the resonance frequencies, and the reflection and transmission coefficients are determined for an insulating multichannel long line, including the case of a cascade connection. Numerical calculations are performed and the plots are presented for the frequency dependences of the reflection and transmission coefficients for various parameters of the constituting lines. It is demonstrated that the acoustic characteristics of insulating multichannel long lines have certain advantages in comparison with the characteristics of similar objects based on single lines.  相似文献   

17.
Computer-aided tomography is a technique for providing a two-dimensional cross-sectional view of a three-dimensional object through the digital processing of many one-dimensional views (or projections) taken at different look directions. In acoustic reflection tomography, insonifying the object and then recording the backscattered signal provides the projection information for a given look direction (or aspect angle). Processing the projection information for all possible aspect angles enables an image to be reconstructed that represents the two-dimensional spatial distribution of the object's acoustic reflectivity function when projected on the imaging plane. The shape of an idealized object, which is an elliptical cylinder, is reconstructed by applying standard backprojection, Radon transform inversion (using both convolution and filtered backprojections), and direct Fourier inversion to simulated projection data. The relative merits of the various reconstruction algorithms are assessed and the resulting shape estimates compared. For bandpass sonar data, however, the wave number components of the acoustic reflectivity function that are outside the passband are absent. This leads to the consideration of image reconstruction for bandpass data. Tomographic image reconstruction is applied to real data collected with an ultra-wideband sonar transducer to form high-resolution acoustic images of various underwater objects when the sonar and object are widely separated.  相似文献   

18.
A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake noise. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. However, the accurate measurement of the wall impedance of a porous woven hose is not easy because of its peculiar acoustical and structural characteristics. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement setup, and, as a result, it is very simple. A variation of the proposed method, an inverse estimation method using one of the four-pole parameters is also proposed. An error sensitivity analysis was performed to investigate the effect of measurement error on the accuracy of the final result. The measured TL for samples with arbitrary lengths and arbitrary porous frequency are in reasonably good agreement with values predicted from curve-fitted impedance data.  相似文献   

19.
吴昊  赵晓臣  王雪仁  李欣 《应用声学》2024,43(2):350-358
水消声器作为一种有效的噪声控制装置被广泛应用于水管路系统,本文分别使用模态匹配法和有限元法对环状气囊水消声器的声学性能进行仿真计算,分析气囊水消声器声学特性的原理,并研究气囊水消声器不同媒介间的特性声阻抗大小关系对消声性能的影响规律。计算结果表明:由于阻抗失配关系,在气囊水消声器中气体对声波的传递起主要反射作用。随着橡胶的特性阻抗增大,橡胶会对从水中传递过来的声波起到一定的阻碍作用。当气体体积被压缩时,气体对声波的反射衰减效果会逐渐减弱,从而使得气囊水消声器的传递损失曲线整体幅值下降,消声性能减弱。  相似文献   

20.
海面冰层对声波的反射和散射特性   总被引:1,自引:0,他引:1       下载免费PDF全文
刘胜兴  李整林 《物理学报》2017,66(23):234301-234301
北极海面冰层复杂多变,其对声波的反射和散射严重影响冰下水声信道的传输特性,建立海面冰层的声波反射和散射模型对冰下水声通信研究具有重要意义.假设海面冰层为多层固体弹性介质且冰-水界面粗糙,满足微扰边界条件,导出声波从海水介质入射到海面冰层时相干反射系数满足的线性方程组.对相干反射系数随声波频率、掠射角、冰层厚度的变化进行数值分析.进一步引入根据散射声场功率谱密度计算散射系数的方法,改变掠射角,对冰层厚度、散射掠角对散射系数的影响进行研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号