首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone.  相似文献   

2.
The stable carbon isotope compositions of tetrols, erythritol and threitol were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using four tetrols with various δ13C values derivatized by methylboronic acid, the carbon isotope analysis method achieved excellent reproducibility and high accuracy. There was no carbon isotopic fractionation during the derivatization processes. The differences in the carbon isotopic compositions of methylboronates between the measured and calculated ranged from ?0.20 to 0.12‰, within the specification of the GC/C/IRMS system. It was demonstrated that δ13C values of tetrols could be calculated by a simple mass balance equation between tetrols, methylboronic acid, and methylboronates. The analogous 2‐methyltetrols, marker compounds of photooxidation products of atmospheric isoprene, should have similar behavior using the same derivatization reagent. This method may provide insight on sources and sinks of atmospheric isoprene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This study describes the utilization of carbonyl- 2,4-dinitrophenylhydrazine (DNPH) derivatives for the determination of a micro amount of carbonyl compounds in air by liquid chromatography-mass spectrometry (LC-MS). After the carbonyl compounds are collected using a Waters Sep-Pak C18 cartridge column with-impregnated DNPH on octadecylsilica, they are eluted by acetonitrile as carbonyl-DNPH derivatives. A 20-mm3 aliquot of eluent is injected into the LC-MS system. The four derivatives (formaldehyde-, acetaldehyde-, acrolein- and acetone-DNPH) were eluted within 7 min with acetonitrile-water (60:40, v/v) as the mobile phase. The proposed method offers sub-ppb sensitivity and good reproducibility and was applied to the determination of these carbonyl compounds in actual air samples from store rooms, laboratories and offices. The relative standard deviations for these samples (n = 6) were 1 to 3%.  相似文献   

4.
A pre-concentration system has been validated for use with a gas chromatography/mass spectrometry/isotope ratio mass spectrometer (GC/MS/IRMS) to determine ambient air (13)C/(12)C ratios for methyl halides (MeCl and MeBr) and chlorofluorocarbons (CFCs). The isotopic composition of specific compounds can provide useful information on their atmospheric budgets and biogeochemistry that cannot be ascertained from abundance measurements alone. Although pre-concentration systems have been previously used with a GC/MS/IRMS for atmospheric trace gas analysis, this is the first study also to report system validation tests. Validation results indicate that the pre-concentration system and subsequent separation technologies do not significantly alter the stable isotopic ratios of the target methyl halides, CFC-12 (CCl(2)F(2)) and CFC-113 (C(2)Cl(3)F(3)). Significant, but consistent, isotopic shifts of -27.5 per thousand to -25.6 per thousand do occur within the system for CFC-11 (CCl(3)F), although the shift is correctible. The method presented has the capacity to separate these target halocarbons from more than 50 other compounds in ambient air samples. Separation allows for the determination of stable carbon isotope ratios of five of these six target trace atmospheric constituents within ambient air for large volume samples (相似文献   

5.
The interest in compound-specific isotope analysis for product authenticity control and source differentiation in environmental sciences has grown rapidly during the last decade. However, the isotopic analysis of very polar analytes is a challenging task due to the lack of suitable chromatographic separation techniques which can be used coupled to isotope ratio mass spectrometry. In this work, we present the first method to measure carbon isotope compositions of the widely applied herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA) by liquid chromatography coupled to isotope ratio mass spectrometry. We demonstrate that this analysis can be carried out either in cation exchange or in reversed-phase separation modes. The reversed-phase separation yields a better performance in terms of resolution compared with the cation exchange method. The measurement of commercial glyphosate herbicide samples show its principal applicability and reveals a wide range of δ13C values between ?24 and ?34 ‰ for different manufacturers. The absolute minimum amounts required to perform a precise and accurate determination of carbon isotope compositions of glyphosate and AMPA were in the sub-microgram range. The method proposed is sensitive enough to further perform the experiments that are necessary to better understand the carbon isotope fractionation associated to the natural degradation of glyphosate into AMPA. Furthermore, it can be used for contaminant source allocation and product authenticity as well.  相似文献   

6.
Isoprene is one of the most important non‐methane hydrocarbons (NMHCs) in the troposphere: it is a significant precursor of O3 and it affects the oxidative state of the atmosphere. The diastereoisomeric 2‐methyltetrols, 2‐methylthreitol and 2‐methylerythritol, are marker compounds of the photooxidation products of atmospheric isoprene. In order to obtain valuable information on the δ13C value of isoprene in the atmosphere, the stable carbon isotopic compositions of the 2‐methyltetrols in ambient aerosols were investigated. The 2‐methyltetrols were extracted from filter samples and derivatized with methylboronic acid, and the δ13C values of the methylboronate derivatives were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The δ13C values of the 2‐methyltetrols were then calculated through a simple mass balance equation between the 2‐methyltetrols, methylboronic acid and the methylboronates. The δ13C values of the 2‐methyltetrols in aerosol samples collected at the Changbai Mountain Nature Reserves in eastern China were found to be ?24.66 ± 0.90‰ and ?24.53 ± 1.08‰ for 2‐methylerythritol and 2‐methylthreitol, respectively. Based on the measured isotopic composition of the 2‐methyltetrols, the average δ13C value of atmospheric isoprene is inferred to be close to or slightly heavier than ?24.66‰ at the collection site during the sampling period. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A method for the determination of acetone in plasma or urine by high-performance liquid chromatography (HPLC) was developed. Plasma specimens are deproteinized with acetonitrile (1:1, v/v) 2,4-dinitrophenylhydrazine (DNPH) is added to the supernatant or to filtered urine samples, similarly treated with acetonitrile (2:1, v/v) to prevent crystallization of the synthesized phenylhydrazone. An aliquot (20 microliters) of the reaction mixture was subjected to HPLC at ambient temperature using a reversed-phase Pecosphere 3 x 3 C18 column with acetonitrile-water (45:55, v/v) as eluent at a flow-rate of 1 ml/min and detection at 365 nm. Hydroxyacetone and acetoacetate phenylhydrazone derivatives do not interfere. The identification of acetone by its retention time was confirmed by comparison with a laboratory-synthesized acetone DNPH derivative. The concentration of acetone, eluted within 3 min, was determined by the peak-height method. The detection limit was 0.034 mmol/l; the relative standard deviations were less than 5% within run (n = 20) and less than 10% between run (n = 20).  相似文献   

8.
9.
The application of a combined gas chromatography-combustion/isotope ratio mass spectrometry (GC-C/IRMS) method for stable carbon isotope analysis of amino acid enantiomers in soil samples is presented. Triplicate delta(13)C analyses of pentafluoropropionyl (PFP) isopropyl ester derivatives of 27 amino acid enantiomers revealed that discrimination of (13)C during derivatization is different for different amino acid enantiomers and different amounts. Injection of increasing amounts of amino acid derivatives showed that the isotopic signal varied up to 10 per thousand for D-aspartic acid. Correction for the delta(13)C signal of underivatized amino acid enantiomers is possible for all investigated amino acid enantiomers using logarithmic functions. Operating the GC-C/IRMS system in the split-mode (split ratio 1:12) is possible but resulted in a higher isotopic discrimination. The detection limit approached 3 ng for some amino acid enantiomers in the splitless mode, while the lower limit of routine determination exceeded 10 ng injection amount. The upper limit at which accurate stable isotope values were obtained was 200 ng injection amount. Compound-specific delta(13)C analysis of alanine, valine, aspartic and glutamic acid showed that the D-forms were enriched in (13)C relative to the L-forms, suggesting that microbes significantly contributed to the formation of the D-enantiomers in soil.  相似文献   

10.
Little is known about the delta13C composition of monosaccharides representing the largest carbon reservoir in the biosphere. The main reason for this might be that monosaccharides have to be derivatized prior to gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses and that a large isotopic correction is necessary for the carbon that has to be added to the original molecule during derivatization, resulting in large uncertainty of the calculated delta13C values of individual monosaccharides. The amount of added derivatization carbon is twice (alditol acetates) or even three times (trimethylsilyl (TMS) derivatives) as high as the amount of the original monosaccharide carbon. In addition, isotope fractionation occurs during acetylation. Therefore, the objectives of this study were (i) to minimize carbon addition during derivatization for GC/C/IRMS measurements of monosaccharides in soil and sediment samples and (ii) to quantify improvements in accuracy and precision of the final results. Minimization of carbon addition was accomplished by derivatization with methylboronic acid (MBA) and TMS thereafter (MBA method). Monosaccharides derivatized with the MBA method instead of TMS reduced the number of added carbon atoms from 2.2-2.7 to 0.3-0.8 per sugar carbon atom. Although the precision of GC/C/IRMS measurements with both methods is comparable (about 0.3 per thousand), delta13C values of an internal standard indicated that the newly developed MBA method is about 2 per thousand more accurate than the TMS method. delta13C comparison between soil samples that differed only slightly in their bulk carbon isotope signature showed that the MBA method is better in proving these small differences on a significant level. Total precision of the whole MBA method including all analytical and calculation steps is better by a factor of almost three than the TMS method.  相似文献   

11.
Gao B  Liu Y  Sun K  Liang X  Peng P  Sheng G  Fu J 《Analytica chimica acta》2008,612(1):114-120
A method for the accurate determination of Cd and Pb isotope compositions in sediment samples is presented. Separation of Cd and Pb was designed by using an anionic exchange chromatographic procedure. Measurements of Cd isotopic compositions were carried out by multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS), by using standard-sample bracketing technology for mass bias correction and Pb isotopic ratios were determined by thermal ionization mass spectrometry (TIMS). The factors that affect the accurate and precise Cd isotope compositions analysis, such as instrumental mass fractionation and isobaric interferences, were carefully evaluated and corrected. The Cd isotopic results were reported relative to an internal Cd solution and expressed as the δ114/110Cd. Five Cd reference solutions and one Pb standard were repeatedly measured in order to assess the accuracy of the measurements. Uncertainties obtained were estimated to be lesser than 0.11‰ (2s) for the δ114/110Cd value. Analytical uncertainties in 2s for Pb isotopic ratios were better than 0.5‰. The method has been successfully applied to the investigation of Cd and Pb isotope compositions in sediment samples collected from North River in south China.  相似文献   

12.
α-Hexachlorocyclohexane (α-HCH) is the only chiral isomer of the eight 1,2,3,4,5,6-HCHs and we have developed an enantiomer-specific stable carbon isotope analysis (ESIA) method for the evaluation of its fate in the environment. The carbon isotope ratios of the α-HCH enantiomers were determined for a commercially available α-HCH sample using a gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) system equipped with a chiral column. The GC-C-IRMS measurements revealed δ-values of -32.5 ± 0.8‰ and -32.3 ± 0.5‰ for (-) α-HCH and (+) α-HCH, respectively. The isotope ratio of bulk α-HCH was estimated to be -32.4 ± 0.6‰ which was in accordance with the δ-values obtained by GC-C-IRMS (-32.7 ± 0.2‰) and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) of the bulk α-HCH (-32.1 ± 0.1‰). The similarity of the isotope ratio measurements of bulk α-HCH by EA-IRMS and GC-C-IRMS indicates the accuracy of the chiral GC-C-IRMS method. The linearity of the α-HCH ESIA method shows that carbon isotope ratios can be obtained for a signal size above 100 mV. The ESIA measurements exhibited standard deviations (2σ) that were mostly < ± 0.5‰. In order to test the chiral GC-C-IRMS method, the isotope compositions of individual enantiomers in biodegradation experiments of α-HCH with Clostridium pasteurianum and samples from a contaminated field site were determined. The isotopic compositions of the α-HCH enantiomers show a range of enantiomeric and isotope patterns, suggesting that enantiomeric and isotope fractionation can serve as an indicator for biodegradation and source characterization of α-HCH in the environment.  相似文献   

13.
Pyrogenic organic matter (PyOM), the incomplete combustion product of organic materials, is considered stable in soils and represents a potentially important terrestrial sink for atmospheric carbon dioxide. One well‐established method of measuring PyOM in the environment is as benzene polycarboxylic acids (BPCAs), a compound‐specific method, which allows both qualitative and quantitative estimation of PyOM. Until now, stable isotope measurement of PyOM carbon involved measurement of the trimethylsilyl (TMS) or methyl (Me) polycarboxylic acid derivatives by gas chromatography–combustion–isotope ratio mass spectrometry (GC‐C‐IRMS). However, BPCA derivatives can contain as much as 150% derivative carbon, necessitating post‐analysis correction for the accurate measurement of δ13 C values, leading to increased measurement error. Here, we describe a method for δ13 C isotope ratio measurement and quantification of BPCAs from soil‐derived PyOM, based on ion‐exchange chromatography (IEC‐IRMS). The reproducibility of the δ13 C measurement of individual BPCAs by IEC‐IRMS was better than 0.35‰ (1σ). The δ13 C‐BPCA analysis of PyOM in soils, including at natural and artificially enriched 13 C‐abundance, produced accurate and precise δ13 C measurements. Analysis of samples that differed in δ13 C by as much as 900‰ revealed carryover of <1‰ between samples. The weighted sum of individual δ13 C‐BPCA measurements was correlated with previous isotopic measurements of whole PyOM, providing complementary information for bulk isotopic measurements. We discuss potential applications of δ13 C‐BPCA measurements, including the study of turnover rates of PyOM in soils and the partitioning of PyOM sources based on photosynthetic pathways. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Comparative analysis involves various but complementary methods and can be used for forensic intelligence purposes to group seizures of heroin into batches. Much forensic analysis now combines expertise in the traditional area of drugs investigation with a detailed understanding of supply, packaging, distribution, and drugs intelligence. It was the intention of this research to determine whether illicit heroin seizures and packaging material can be grouped according to isotopic compositions, and to explore factors that affect the isotopic compositions. In order to achieve these aims, 14 samples of seized heroin, thirteen provided by Avon and Somerset Constabulary (UK), were analysed by elemental analysis/isotope ratio mass spectrometry (EA/IRMS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) for carbon and hydrogen isotopes. These tests elucidated that a combination of the delta13C, delta15N, delta18O and delta2H results from EA/IRMS is able to distinguish between most samples of bulk heroin. We speculate that the delta13C values of the alkaloids, obtained by GC/C/IRMS, give indications of different geographical or temporal origins of some of the heroin samples. GC/C/IRMS of the cutting agent, caffeine, provides a means to link dilution events. Fifteen retail cling film samples and seven cling film samples from heroin seizures were analysed by EA/IRMS. A multivariate comparison of the carbon, hydrogen and oxygen isotope ratios was able to distinguish between most of the samples. This technique enabled the cling films from the heroin to be grouped according to seizure. Three solvents were tested on two samples of cling film of known composition. Methanol and chloroform were both found to extract material from PVC and from non-PVC cling films. Water-treated PVC was indistinguishable from the untreated PVC and thus water was found to be the most suitable solvent when washing cling film prior to IRMS analysis.  相似文献   

15.
The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C‐isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques the samples must be derivatized prior to analysis, which makes sample preparation more labour‐intensive and increases the uncertainty of the measured isotopic composition. A novel method for the determination of isotopic enrichment of glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been developed. Using this technique, for which hardly any sample preparation is needed, we showed that both the enrichment and the concentration could be measured with very high precision using only 20 µL of plasma. In addition, a comparison with GC/MS and GC/IRMS showed that the best performance was achieved with the LC/IRMS method making it the method of choice for the measurement of 13C‐isotopic enrichment in plasma samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
We have examined the carbon, nitrogen and oxygen isotopic compositions of American, Mexican, Australian, New Zealand and Korean beefs, which are currently being circulated in Korean markets, to check whether stable isotope ratios can identify their country of origin. Each beef exhibited statistically distinct isotopic compositions, especially in oxygen and carbon, because of the different isotopic compositions of their water and cattle feeds. Nevertheless, their isotopic compositions still showed some overlap, especially among USA, Australian, and Korean beefs, which sometimes resulted in significant misidentification when a single isotope was considered. However, the discrimination was generally successful when both the carbon and the oxygen isotopes were used. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We have developed an analytical system to determine stable isotopic compositions (delta13C and delta18O) of sub-microgram quantities of CaCO3 for the purpose of analyzing individual foraminiferal shells, using continuous-flow isotope ratio mass spectrometry (CF-IRMS). The system consists of a micro-volume CaCO3 decomposition tube, stainless steel CO2 purification vacuum line with a quantity-regulating unit, helium-purged CO2 purification line, gas chromatograph, and a CF-IRMS system. By using this system, we can determine stable carbon and oxygen isotopic compositions as low as 0.2 microg of CaCO3, with standard deviations of +/-0.10 per thousand for delta13C and +/-0.18 per thousand for delta18O within a 4-h reaction time and 30-min analysis period.  相似文献   

18.
Past atmospheric composition can be reconstructed by the analysis of air enclosures in polar ice cores which archive ancient air in decadal to centennial resolution. Due to the different carbon isotopic signatures of different methane sources high-precision measurements of delta13CH4 in ice cores provide clues about the global methane cycle in the past. We developed a highly automated (continuous-flow) gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) technique for ice core samples of approximately 200 g. The methane is melt-extracted using a purge-and-trap method, then separated from the main air constituents, combusted and measured as CO2 by a conventional isotope ratio mass spectrometer. One CO2 working standard, one CH4 and two air reference gases are used to identify potential sources of isotope fractionation within the entire sample preparation process and to enhance the stability, reproducibility and accuracy of the measurement. After correction for gravitational fractionation, pre-industrial air samples from Greenland ice (1831 +/- 40 years) show a delta13C(VPDB) of -49.54 +/- 0.13 per thousand and Antarctic samples (1530 +/- 25 years) show a delta13C(VPDB) of -48.00 +/- 0.12 per thousand in good agreement with published data.  相似文献   

19.
Elemental analyzers have been successfully coupled to stable-isotope-ratio mass spectrometers for online measurements of the delta(34)S isotopic composition of plants, animals and soils. We found that the online technology for automated delta(34)S isotopic determinations did not yield reproducible oxygen isotopic compositions in the SO(2) produced, and as a result calculated delta(34)S values were often 1-3 per thousand too high versus their correct values, particularly for plant and animal samples with high C/S ratio. Here we provide empirical and analytical methods for correcting the S isotope values for oxygen isotope variations, and further detail a new SO(2)-SiO(2) buffering method that minimizes detrimental oxygen isotope variations in SO(2).  相似文献   

20.
Degradation experiments of benzoate by Pseudomonas putida resulted in enzymatic carbon isotope fractionations. However, isotopic temperature effects between experiments at 20 and 30 degrees C were minor. Averages of the last three values of the CO(2) isotopic composition (delta(13)C(CO2(g))) were more negative than the initial benzoate delta(13)C value (-26.2 per thousand Vienna Pee Dee Belenite (VPDB)) by 3.8, 3.4 and 3.2 per thousand at 20, 25 and 30 degrees C, respectively. Although the maximum isotopic temperature difference found was only 0.6 per thousand, more extreme temperature variations may cause larger isotope effects. In order to understand the isotope effects on the total inorganic carbon (TIC), a better measure is to calculate the proportions of the inorganic carbon species (CO(2)(g), CO(2)(aq) and HCO(3)(-)) and to determine their cumulative delta(13)C(TIC). In all three experiments delta(13)C(TIC) was more positive than the initial isotopic composition of the benzoate at a pH of 7. This suggests an uptake of (12)C in the biomass in order to match the carbon balance of these closed system experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号