首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 907 毫秒
1.
A white light-emitting device has been fabricated with a structure of ITO/m-MTDATA (45 nm)/NPB (10 nm)/DPVBi (8 nm)/DPVBi:DCJTB 0.5% (15 nm)/BPhen (x nm)/Alq3 [(55−x) nm]/LiF (1 nm)/Al, with x=0, 4, and 7. BPhen was used as the hole-blocking layer. This results in a mixture of lights from DPVBi molecules (blue-light) and DCJTB (yellow-light) molecules, producing white light emission. The chromaticity can be readily adjusted by only varying the thickness of the BPhen layer. The CIE coordinates of the device are largely insensitive to the driving voltages. When the thickness of BPhen is 7 nm, the device exhibits peak efficiency of 6.87 cd/A (3.59 lm/W) at the applied voltage of 6 V, the maximum external quantum efficiency ηext=2.07% corresponding to 6.18 cd/A, and the maximum brightness is 18494 cd/m2 at 15 V.  相似文献   

2.
Co50Fe50-xSix合金的结构相变和磁性   总被引:1,自引:0,他引:1       下载免费PDF全文
汪津  赵毅  谢文法  段羽  陈平  刘式墉 《物理学报》2011,60(10):107203-107203
利用实验测量和理论计算相结合的方法,研究了介于B2结构CoFe低有序合金和L21结构Co2FeSi高有序合金之间的Co50Fe50-xSix合金的结构相变、磁相变、分子磁矩和居里温度.采用考虑Coulomb相互作用的广义梯度近似(GGA+U)方法计算了合金的能带结构.研究发现,合金出现较强的原子有序倾向,表现出较强的共价成相作用.合金的晶格常数、磁矩、居里温度随Si含量的增加而线性地降低,极限成分Co2FeSi合金的分子磁矩和居里温度分别达到5.92μB和777 ℃.原子尺寸效应导致合金晶格发生变化,但并未成为居里温度和分子磁矩变化的主导因素.分子磁矩的变化符合Slater-Pauling原理,但发现原子磁矩的变化并非线性,据此提出了共价成相对磁性影响的观点.采用Stearns理论解释了居里温度的变化趋势,排除了原子间距对居里温度的主导影响作用.能带计算的结果还表明,Co2FeSi作为半金属材料并非十分完美,可能在实际应用中会出现自旋极化率降低的问题.发现该系列合金的结构相变和磁相变随着成分的变化聚集在窄小的成分和温度范围内. 关键词: 磁性 Heusler合金 结构相变  相似文献   

3.
《Current Applied Physics》2010,10(5):1326-1330
This paper describes the white organic light-emitting diodes (WOLEDs) made from a benzothiazole derivative, N-(4-(benzo[d]thiazol-2-yl)phenyl)-N-phenylnaphthalen-1-amine (BPNA). The bright yellowish-white emission was obtained from a non-doped triple-layer device: ITO/NPB (40 nm)/BPNA (50 nm)/Alq3 (40 nm)/LiF/Al. The Commission Internationale de L’Eclairage (CIE) coordinates of the device were (0.24, 0.36) at 10 V. The maximum brightness of the device was 9225 cd/m2 at 14.4 V. A current efficiency of 3.08 cd/A, a power efficiency of 1.21 lm/W and an external quantum efficiency of 1.18% at a driving current density of 20 mA/cm2 were achieved. WOLED with a DCJTB-doped structure of ITO/TcTa/BPNA/BPNA: DCJTB (0.5%)/BPNA/BCP/Alq3/LiF/Al was fabricated in comparison with the non-doped device. The device emitted bright white light with the CIE coordinates of (0.33, 0.29) at 10 V and a maximum luminance of 7723 cd/m2 at 14.8 V.  相似文献   

4.
In this paper, a new white organic light-emitting device (WOLED) with multilayer structure has been fabricated. The structure of devices is ITO/N, N-bis-(1-naphthyl)-N, N-diphenyl-1, 1′-biphenyl-4, 4′-diamine (NPB) (40 nm)/NPB: QAD (1%): DCJTB (1%) (10 nm) /DPVBi (10 nm) /2, 9-dimethyl, 4, 7-diphenyl, 1, 10-phenanthroline (BCP) (d nm)/tris-(8-hydroxyquinoline) aluminium (Alq3)(50-d nm)/LiF (1 nm)/Al (200 nm). In our devices, a red dye 4-(dicyanomethylene)-2-t-butyl-6 (1, 1, 7, 7-tetramethyl julolidyl-9-enyl)-4H-pyran (DCJTB) and a green dye quinacridone (QAD) were co-doped into NPB. The device with 8 nm BCP shows maximum luminance of 12 852 cd/m2 at 20 V. The current efficiency and power efficiency reach 9.37 cd/A at 9 V and 3.60 lm/W at 8 V, respectively. The thickness of the blocking layer permit the tuning of the device spectrum to achieve a balanced white emission with Commission International de’Eclairage (CIE) chromaticity coordinates of (0.33,0.33). The CIE coordinates of device change from (0.3278, 0.3043) at 5 V to (0.3251, 0.2967) at 20 V that are well in the white region, which is largely insensitive to the applied bias.  相似文献   

5.
We report on the fabrication of blue organic light-emitting devices (BOLEDs) with structure: ITO/NPB/DPVBi/Alq3/LiF/Al. The hole-blocking effect in NPB/DPVBi interface was indirectly demonstrated and deduced by inserting DCJTB layer. In addition, the effect of the device with better JV characteristics because of the extra DCJTB layer is discussed as well. However, the performance of devices was investigated with various thicknesses of DPVBi layer. The result shows that the device with proper thickness of DPVBi layer generating better electron injection enhances efficiency and luminance for BOLED.  相似文献   

6.
Characterization of two-emitter WOLED with no additional blocking layer   总被引:1,自引:0,他引:1  
Wenbin Chen  Lili Lu  Jianbo Cheng 《Optik》2010,121(1):107-680
In this paper, white organic light emitting diodes (WOLEDs) utilizing two primary-color emitters with no additional blocking layer are fabricated. With a structure of ITO/2TNATA (20 nm)/NPB (20 nm)/NPB: rubrene (2%) (10 nm)/ADN (30 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (100 nm), a white light with CIE coordinates of (0.344, 0.372) is generated at a current density of 30 mA/cm2 and the electroluminescence (EL) spectra consist of two broad bands around 456 nm (ADN) and 556 nm (NPB:rubrene). The device shows the low turn-on voltage and bright white emission with a power efficiency of 2.3 lm/W at a luminance of 100 cd/m2. Through control of the location of the recombination zone and energy transfer, a stable white light emission is achieved. The maximum color shift is less than 0.02 units on the 1931 CIE x,y chromaticity diagram. Given the spectral power distribution of WOLED, the parameters of a light source (chromaticity coordinate, CCT, CRI, and the luminous efficacy) can be calculated. A MATLAB program for this purpose is developed in this paper. Based on this, the design of WOLED for an illumination and display system using a white emitter with color filter arrays is discussed.  相似文献   

7.
Performances of red organic light-emitting device were improved by co-doping 2-formyl-5,6,11,12-tetraphenylnaphthacene (2FRb) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) in tris-(8-hydroxyquinoline) aluminum (Alq3) host as the emitting layer. The device with 1 wt% DCJTB and 2.4 w% 2FRb in Alq3 host gave a saturated red emission with CIE chromaticity coordinates of (0.65, 0.35) and a maximum current efficiency as high as 6.45 cd/A, which are 2 and 2.4 fold larger than that of the device with 1 wt% DCJTB (3.28 cd/A) in Alq3 host and the device with 2.4 wt% 2FRb (2.72 cd/A) in Alq3 host at the current density of 20 mA/cm2, respectively. The improvement could be attributed to the effective utilization of host energy by both energy transfer and trapping in the electroluminescence process and the depression of concentration quenching between the dopants molecules.  相似文献   

8.
For the high luminance and quantum efficiency, we propose a novel structure of white organic light-emitting diode (WOLED) using two white emissive layers (EML). The host material of MADN with the blue dopant of BCzVBi and the red dopant of DCJTB was used for one EML and DPVBi as host material with those dopants for the other EML. By considering the order of the EMLs and their energy band gaps in the device structure, the charge carrier trapping can be generated. They play a role in the barrier function at the EML enhancing the recombination where the holes and electrons were trapped in the DPVBi and MADN. The quantum efficiency can be improved by the charge carrier trapping in the WOLED with the double white EMLs as obtaining 4.23% at 10 mA/cm2, and it is vastly superior to that of the WOLED with a single EML. White color balance is also excellent with color coordinates of (0.36, 0.34) in the CIE 1931 (x, y) chromaticity diagram.  相似文献   

9.
Efficient white organic light-emitting diodes (WOLEDs) are fabricated with a thin layer of 9,10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene as the source of white emission. A device with the structure of ITO/NPB (70 nm)/ADN: 0.5% Rubrene (30 nm)/Alq3 (50 nm)/MgAg shows a maximum current efficiency of 3.7 cd/A, with the CIE coordinates of x=0.33, y=0.43. The EL spectrum of the devices and the CIE coordinates remains almost the same when the voltage is increased from 10 to 15 V and the current efficiency remains quite stable with the current density increased from 20 to 250 mA/cm2.  相似文献   

10.
An adjustable chromaticity layer was successfully applied to a TBADN-based blue organic light-emitting device (BOLED) for improving chromaticity and luminance efficiency. The device was constructed by sandwiching an ultrathin [DPVBi: BCzVB] layer between hole-transport layer and primary emission layer. The optimized device gives the Commission Internationale de I’éclairage (CIE) color coordinates of (0.166, 0.201) at the current density of 20 mA/cm2 and a maximum luminance efficiency of 8.43 cd/A at the driving voltage of 11 V.  相似文献   

11.
High efficiency red organic light-emitting devices (OLEDs) with several dotted-line doped layers (DLDLs) were fabricated by using an ultra-high vacuum organic molecular-beam deposition system. The red OLEDs consisted of indium-tin-oxide (ITO)/N, N′-diphenyl-N, N′-bis(1-naphthyl)-(1, 1′-biphenyl)-4, 4′-diamine (α-NPD): 40 nm/tris(8-hydroxyquinoline)aluminum (Alq3)+4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetra-methyljuloldyl-9-enyl)-4H-pyran (DCJTB); 3%wt.: x nm/(Alq3+DCJTB; 3%wt./ Alq3)n−1: (30−x) nm/ Alq3: 30 nm/Mg:Ag with n of 2, 4, 6, or 8, and x=30/(2n−1). The luminance yield of the device with 8 DLDLs was 75% higher than that of the device with a common doped layer. This was attributed to more formation of the excitons formed in a wider region resulting from the existence of the DLDLs. The dominant mechanisms of the dopant emission for the devices with DLDLs were described on the basis of the sequential carrier trapping process.  相似文献   

12.
This paper presents the characteristics of high-stability white organic light-emitting diodes (WOLEDs). For the preparation of WOLEDs with a single-emission layer (EML), the source materials of MADN, BCzVB, C6, and DCJTB were solvent premixed before evaporation. The structure of the WOLEDs was ITO/NPB (50 nm)/EML (40 nm)/Bphen (30 nm)/Al (200 nm). The materials that comprised the EML for dual- and tri-wavelength WOLEDs were MADN:BCzVB:DCJTB and MADN:BCzVB:C6:DCJTB, respectively. The energy transfer between the host and the dyes influenced the luminance efficiency and chromaticity coordinates of the devices. The maximum current efficiencies were 6.34 and 6.38 cd/A for the dual- and tri-wavelength WOLEDs, respectively. The efficiency of the WOLEDs was enhanced by C6 doping, although a slight variation in the chromaticity coordinates was observed, which was resulted from variations in the applied voltage.  相似文献   

13.
White organic light-emitting devices (WOLEDs) were fabricated with an ultrathin layer of rubrene inserted between NPB and TPBI. With a simple three-layer structure of ITO/NPB(50 nm)/rubrene(0.1 nm)/TPBI(50 nm)/LiF/Al, a white light with CIE coordinates of (0.31, 0.30) were generated. The device gave a maximum luminance efficiency of 2.04 lm/W at 5 V. Furthermore, with a multilayer structure of ITO/m-MTDATA(30 nm)/NPB(20 nm)/rubrene(0.1 nm)/TPBI(40 nm)/Alq3(10 nm)/LiF/Al, the device reached a maximum luminance efficiency of 4.29 lm/W at 4 V and the luminance could exceed 10 000 cd/m2 at 10 V.  相似文献   

14.
We report the synthesis of pyrene derivatives as the light emissive layer for highly efficient organic electroluminescence (EL) diodes. Multilayer devices were fabricated with pyrene derivatives (ITO/NPB (50 nm)/blue material (30 nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al). By using 1,1′-dipyrene (DP) and 1,4-dipyrenyl benzene (DPB), the devices produced the blue EL emissions with 1931 Commission International de L’Eclairage coordinates of (x=0.21, y=0.35) and (x=0.19, y=0.25), respectively. The device with DPB shows a maximum brightness of 42,445 cd/m2 at 400 mA/cm2 and the luminance efficiency of 8.57 cd/A and 5.18 lm/W at 20 mA/cm2.  相似文献   

15.
This work investigates how the thickness of the hole injection layer (HIL) influences the luminescent characteristics of white organic light-emitting diodes (WOLED). Experimental results indicate that inserting a thin HIL (<200 Å) into a WOLED without an HIL reduces the brightness and clearly changes the chromaticity because the surface of the 4,4′,4″-tris{N,-(3-methylphenyl)-N-phenylamino}-triphenylamine) (m-MTDATA) film is extremely rough. In contrast, a dense film structure and the fine surface morphology of m-MTDATA of moderate thickness (350-650 Å) provides a uniform conducting path on which holes cross the indium tin oxide (ITO)/HIL interface, improving luminescent performance, associated with the relatively stable purity of the color of the emission, with Commission Internationale 1′Eclairage (CIE) coordinates of (x = 0.40, y = 0.40). However, inserting a thick HIL (>650 Å) reduces the luminescent performance and causes red-shift, because the holes and electrons in the effective emissive confinement region become less optimally balanced. Moreover, optimizing the device structure enables a bright WOLED with CIE coordinates of (x = 0.34, y = 0.33) to reach a luminance of 7685 cd/m2 at a current density of 100 mA/cm2, with a maximum luminous efficiency of 1.72 lm/W at 5.5 V.  相似文献   

16.
以蓝色发光材料DPVBi为基质的白色发光器件   总被引:8,自引:3,他引:5  
白色有机发光器件是实现彩色平板显示的重要方案之一。利用蓝色发光材料DPVBi[4,4′—(2,2—苯乙烯基)—1,1′—联苯]掺杂红光染料DCJTB[4—氰甲烯基—2—叔丁基—6—(1,1,7,7—四甲基久洛尼定基—9—烯炔基—4H—吡喃)]作发光层制备了白色发光器件。研究了DPVBi掺杂不同浓度IDCJTB薄膜的光致发光性质,根据光致发光结果,制备了以DPVBi掺杂不同浓度DCJTB作发光层的电致发光器件,其结构为ITO/GuPc/NPB/DPVBi:DCJTB/Alq3/LiF/Al。当DCJTB质量分数为0.0008时,器件实现了白色发光(色度x=0.25,y=0.32),电致发光和光致发光的掺杂比例基本相符,表明器件的白色发光主要是由基质DPVBi向掺杂剂DCJTB的能量传递产生的。研究还发现:白色器件随电压升高,光谱中蓝色成分相对于红色成分的比例略有增加,文章对此现象进行了分析。该白光器件在14V时达到最高亮度7822cd/cm^2,在20mA/cm^2电流密度下的亮度为-489cd/cm^2,最大流明效率为1.75lm/W。  相似文献   

17.
Stable white electroluminescence (EL) has been achieved from organic LED, in which an ultrathin 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl-aminostyryl)-4H-pyran (DCM) dye layer has been inserted in between two 2-methyl-8-hydroxyquinolinolatolithium [LiMeq] emitter layer and by optimizing the position of the DCM dye layer from the α-NPD/LiMeq interface. Electroluminescence spectra, current-voltage-luminescence (I-V-L) characteristics of the devices have been studied by changing the position of the dye layer. As the distance of DCM layer from α-NPD/LiMeq interface is increased, the intensity of host emission enhances rapidly. Introduction of thin layer of DCM in emissive layer increases the turn on voltage. The best Commission International de L’ Eclairage (CIE) coordinates i.e. (0.32, 0.33) were obtained with device structure ITO/α-NPD(30 nm) /LiMeq(10 nm)/DCM(1 nm)/LiMeq(25 nm)/BCP(6 nm)/Alq3(28 nm)/LiF(1 nm)/Al(100 nm). The EL spectrum covers the whole visible spectra range 400-700 nm. The color rendering index (CRI) for our best white light (Device 4) is 47.4. The device shows very good color stability in terms of CIE coordinates with voltages. The maximum luminescence 1240 cd/m−2 has been achieved at 19 V.  相似文献   

18.
Efficient white electroluminescence has been obtained by using an electroluminescent layer comprising of a blue fluorescent bis (2-(2-hydroxyphenyl) benzoxazolate)zinc [Zn(hpb)2] doped with red phosphorescent bis (2-(2′-benzothienyl) pyridinato-N,C3′)iridium(acetylacetonate) [Ir(btp)2acac] molecules. The color coordinates of the white emission spectrum was controlled by optimizing the concentration of red dopant in the blue fluorescent emissive layer. Organic light-emitting diodes were fabricated in the configuration ITO/α-NPD/Zn(hpb)2:0.01 wt%Ir(btp)2acac/BCP/Alq3/LiF/Al. The J-V-L characteristic of the device shows a turn on voltage of 5 V. The electroluminescence (EL) spectra of the device cover a wide range of visible region of the electromagnetic spectrum with three peaks around 450, 485 and 610 nm. A maximum white luminance of 3500 cd/m2 with CIE coordinates of (x, y=0.34, 0.27) at 15 V has been achieved. The maximum current efficiency and power efficiency of the device was 5.2 cd/A and 1.43 lm/W respectively at 11.5 V.  相似文献   

19.
We investigated solution-processed films of 4,4′-bis(2,2-diphenylvinyl)-1,1′-bibenyl (DPVBi) and its blends with N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TPD) by atomic force microscopy (AFM). The AFM result shows that the solution-processed films are pin-free and their morphology is smooth enough to be used in OLEDs. We have developed a solution-processed white organic light-emitting device (WOLEDs) based on small-molecules, in which the light-emitting layer (EML) was formed by spin-coating the solution of small-molecules on top of the solution-processed hole-transporting layer. This WOLEDs, in which the EML consists of co-host (DPVBi and TPD), the blue dopant (4,4′-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and the yellow dye (5,6,11,12-tetraphenylnaphtacene), has a current efficiency of 6.0 cd/A at a practical luminance of 1000 cd/m2, a maximum luminance of 22500 cd/m2, and its color coordinates are quite stable. Our research shows a possible approach to achieve efficient and low-cost small-molecule-based WOLEDs, which avoids the complexities of the co-evaporation process of multiple dopants and host materials in vacuum depositions.  相似文献   

20.
In this paper, the roles of zinc selenide (ZnSe) sandwiched between organic layers, i.e. organic/ZnSe/aluminum quinoline (Alq3), have been studied by varying device structure. A broad band emission was observed from ITO/poly(N-vinylcarbazole)(PVK)(80 nm)/ZnSe(120 nm)/ Alq3(15 nm)/Al under electric fields and it combined the emissions from the bulk of PVK, ZnSe and Alq3, however, emission from only Alq3 was observed from trilayer device ITO/N,N-bis-(1-naphthyl)-N,N-diphenyl-1, 1-biphenyl-4, 4-diamine (NPB) (40 nm)/ZnSe(120 nm)/ Alq3(15 nm)/Al. Consequently the luminescence mechanism in the ZnSe layer is suggested to be charge carrier injection and recombination. By thermal co-evaporating Alq3 and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), we get white light emission with a Commission Internationale de l’E clairage (C.I.E) co-ordinates of (0.32, 0.38) from device ITO/PVK(80 nm)/ZnSe(120 nm)/ Alq3:DCJTB(0.5 wt% DCJTB)(15 nm)/Al at 15 V and the device performs stably with increasing applied voltages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号