首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ability of a quadrupole-based ICP-MS with an octopole collision cell to obtain precise and accurate measurements of isotope ratios of magnesium, calcium and potassium was evaluated. Hydrogen and helium were used as collision/reaction gases for ICP-MS isotope ratio measurements of calcium and potassium in order to avoid isobaric interference with the analyte ions from (mainly) argon ions 40Ar+ and argon hydride ions 40Ar1H+. Mass discrimination factors determined for the isotope ratios 25Mg/24Mg, 40Ca/44Ca and 39K/41K under optimized experimental conditions varied between 0.044 and 0.075. The measurement precisions for 25Mg/24Mg, 40Ca/44Ca and 39K/41K were found to be 0.09%, 0.43% and 1.4%, respectively. This analytical method that uses ICP-QMS with a collision cell to obtain isotope ratio measurements of magnesium, calcium and potassium was used in routine mode to characterize biological samples (nutrient solution and small amounts of digested plant samples). The mass spectrometric technique was employed to study the dynamics of nutrient uptake and translocation in barley plants at different root temperatures (10 °C and 20 °C) using enriched stable isotopes (25Mg, 44Ca and 41K) as tracers. For instance, the mass spectrometric results of tracer experiments demonstrated enhanced 25Mg and 44Ca uptake and translocation into shoots at a root temperature of 20 °C 24 h after isotope spiking. In contrast, results obtained from 41K tracer experiments showed the highest 41K contents in plants spiked at a root temperature of 10 °C.  相似文献   

2.
Determination of copper using inductively coupled plasma mass spectrometry (ICP-MS) suffers from polyatomic overlays originating from Na+ and Mg2+ matrix elements due to the formation of 40Ar23Na+ and 40Ar25Mg+ in the mass-to-charge ratios of 63 and 65, respectively. The collision/reaction cell technology belongs to the most modern methods used to overcome polyatomic interferences. Gas-filled collision/reaction cell can cause an additional mass bias effect influencing analytical precision of the method. In this study, the additional mass bias effect of the hexapole collision/reaction cell ICP-MS was studied on an example of n(65Cu)/n(63Cu) isotope ratio. As a result, a method for suppressing polyatomic interference on the mass-to-charge ratio of 63 and 65 was introduced and additional mass bias of the collision/reaction cell was lowered to an acceptable level.  相似文献   

3.
Isotope dilution is a useful technique to measure the labile metal pool, which is the amount of metal in soil in rapid equilibrium (<7 days) with the soil solution. This is normally performed by equilibrating soil with a metal isotope, and sampling the labile metal pool by using an extraction (E value), or by growing plants (L value). For Cu, this procedure is problematic for E values, and impossible for L values, due to the short half-life of the 64Cu radioisotope (12.4 h), which makes access and handling very difficult. We therefore developed a technique using enriched 65Cu stable isotope and measurement of 63Cu/65Cu ratios by quadrupole inductively coupled plasma mass spectrometry (ICP-MS) to measure labile pools of Cu in soils using E value techniques. Mass spectral interferences in detection of 63Cu/65Cu ratios in soil extracts were found to be minimal. Isotope ratios determined by quadrupole ICP-MS compared well to those determined by high-resolution (magnetic sector) ICP-MS. E values determined using the stable isotope technique compared well to those determined using the radioisotope for both uncontaminated and Cu-contaminated soils.  相似文献   

4.
A single collector double focusing sector field ICP-MS is evaluated for the determination of isotope ratios. Spectral interferences (e.g. 40Ar23Na on 63Cu) can lead to calculation of inaccurate ratios. The use of high resolution enables such interferences to be separated from the isotopes of interest. External reproducibilities of < 0.02% are shown for uninterfered isotopes (measured at low resolution R = 300) and < 0.1% for interfered isotopes which required the use of medium (R = 4000) and high resolution (R = 10000). Received: 11 January 1999 / Revised: 8 April 1999 / Accepted: 11 April 1999  相似文献   

5.
A single collector double focusing sector field ICP-MS is evaluated for the determination of isotope ratios. Spectral interferences (e.g. 40Ar23Na on 63Cu) can lead to calculation of inaccurate ratios. The use of high resolution enables such interferences to be separated from the isotopes of interest. External reproducibilities of < 0.02% are shown for uninterfered isotopes (measured at low resolution R = 300) and < 0.1% for interfered isotopes which required the use of medium (R = 4000) and high resolution (R = 10000). Received: 11 January 1999 / Revised: 8 April 1999 / Accepted: 11 April 1999  相似文献   

6.
Precise and accurate isotope ratio measurements by ICP-MS   总被引:2,自引:0,他引:2  
The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.  相似文献   

7.
The determination of uranium isotope ratios in individual particles is of great importance for nuclear safeguards. In the present study, an analytical technique by inductively coupled plasma mass spectrometry (ICP-MS) with a desolvation sample introduction system was applied to isotope ratio analysis of individual uranium particles. In ICP-MS analysis of individual uranium particles with diameters ranging from 0.6 to 4.2 μm in a standard reference material (NBL CRM U050), the use of the desolvation system for sample introduction improved the precision of 234U/238U and 236U/238U isotope ratios. The performance of ICP-MS with desolvation was compared with that of a conventionally used method, i.e., secondary ion mass spectrometry (SIMS). The analysis of test swipe samples taken at nuclear facilities implied that the performance of ICP-MS with desolvation was superior to that of SIMS in a viewpoint of accuracy, because the problems of agglomeration of uranium particles and molecular ion interferences by other elements could be avoided. These results indicated that ICP-MS with desolvation has an enough ability to become an effective tool for nuclear safeguards.  相似文献   

8.
Anion-exchange chromatography with inductively coupled plasma mass spectrometry (ICP-MS) is often used for the speciation of arsenic (As). In this work, either He or H2 was introduced to the octopole collision/reaction cell to eliminate chloride (Cl) interferences during As speciation by ICP-MS. Polyatomic species, 40Ar35Cl and 38Ar37Cl, which are formed in high chloride matrices interfere with the ICP-MS detection of 75As. These interferences were reduced or eliminated by introducing He or H2 to the collision/reaction cell, with some loss in sensitivity when compared to the standard mode (no gas). For example, the sensitivity of As(V) was 30.4 and 17.7% of that observed in standard mode when introducing He and H2, respectively. Chloride interference was completely eliminated using a flow rate of 3.0 mL min− 1 with H2 as a reaction gas with detection limits in the range of 0.3-0.6 μg L− 1. The developed method was applied to determination of arsenic species in waters containing high concentrations of chloride by following a simple procedure and without modification of the ICP-MS instrument.  相似文献   

9.
An analytical method is described for the routine quantification of five elements (As, Cr, Fe, Ni, and Se) in plants and animal feedstuffs using dynamic reaction cell inductively coupled plasma mass spectrometry (ICP-DRC-MS) after microwave digestion. Methane (for Cr, Fe, Ni, and Se) and oxygen (for As) were used as reaction gases to reduce polyatomic interferences. Optimization of the gas flow rate and the quadrupole dynamic bandpass tuning parameter (RPq) was carried out for the method. Detection limits (LOD) were in the range of 0.03–0.65 µg L? 1 and were significantly lower compared to the standard mode without DRC. The trueness of the method was tested using three reference materials from Round robin tests. Results were well in accordance with the certified values. Furthermore, DRC data were examined by analyzing the same samples using sector field ICP-MS (SF-ICP-MS) and an ICP-MS equipped with collision cell technology (ICP-CCT-MS). The data obtained were in the confidence range of the reference material, too. The investigated method was applied for the analysis of grass and corn silage samples.  相似文献   

10.
Electrolytes in serum are important biomarkers for skeletal and cellular health. The levels of electrolytes are monitored by measuring the Ca, Mg, K, and Na in blood serum. Many reference methods have been developed for the determination of Ca, Mg, and K in clinical measurements; however, isotope dilution thermal ionization mass spectrometry (ID-TIMS) has traditionally been the primary reference method serving as an anchor for traceability and accuracy to these secondary reference methods. The sample matrix must be separated before ID-TIMS measurements, which is a slow and tedious process that hindered the adoption of the technique in routine clinical measurements. We have developed a fast and accurate method for the determination of Ca, Mg, and K in serum by taking advantage of the higher mass resolution capability of the modern sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Each serum sample was spiked with a mixture containing enriched 44Ca, 26Mg, and 41K, and the 42Ca+:44Ca+, 24Mg+:26Mg+, and 39K+:41K+ ratios were measured. The Ca and Mg ratios were measured in medium resolution mode (m/Δm?≈?4 500), and the K ratio in high resolution mode (m/Δm?≈?10 000). Residual 40Ar1H+ interference was still observed but the deleterious effects of the interference were minimized by measuring the sample at K?>?100 ng g?1. The interferences of Sr++ at the two Ca isotopes were less than 0.25 % of the analyte signal, and they were corrected with the 88Sr+ intensity by using the Sr++:Sr+ ratio. The sample preparation involved only simple dilutions, and the measurement using this sample preparation approach is known as dilution-and-shoot (DNS). The DNS approach was validated with samples prepared via the traditional acid digestion approach followed by ID-SF-ICP-MS measurement. DNS and digested samples of SRM 956c were measured with ID-SF-ICP-MS for quality assurance, and the results (mean ± expanded uncertainty in mg dL?1 unit) for Ca (DNS?=?10.14?±?0.13, digested?=?10.11?±?0.10), Mg (DNS?=?2.093?±?0.008, digested?=?2.098?±?0.007), and K (DNS?=?15.48?±?0.11, digested?=?15.50?±?0.28) were in good agreement with the certified values (Ca?=?10.17?±?0.06, Mg?=?2.084?±?0.023, K?=?15.55?±?0.13). Major sources of uncertainty are sample measurement, spike calibration, and instrument factor including mass discrimination of the spectrometer and the detector deadtime.  相似文献   

11.
The application of an ion-guiding buffer gas-filled hexapole collision and reaction cell in ICP-MS has been studied in order to give a preliminary performance characterization of a new instrument providing this feature for increasing the ion yield and decreasing contributions from Ar induced interfering molecular ions. As buffer gas He was used while H2 served as reaction gas. Addition of the latter can be an effective means for reduction of typical argon induced polyatomic ions (Ar+, ArO+, Ar2 +) by orders of magnitude owing to gas phase reactions. Molecular interferences generated in the cell can be suppressed by a retarding electric field established by a dc hexapole bias potential of –2 V. Received: 10 May 1999 / Revised: 4 June 1999 / Accepted: 12 June 1999  相似文献   

12.
The application of an ion-guiding buffer gas-filled hexapole collision and reaction cell in ICP-MS has been studied in order to give a preliminary performance characterization of a new instrument providing this feature for increasing the ion yield and decreasing contributions from Ar induced interfering molecular ions. As buffer gas He was used while H2 served as reaction gas. Addition of the latter can be an effective means for reduction of typical argon induced polyatomic ions (Ar+, ArO+, Ar2 +) by orders of magnitude owing to gas phase reactions. Molecular interferences generated in the cell can be suppressed by a retarding electric field established by a dc hexapole bias potential of –2 V.  相似文献   

13.
To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS ("Platform ICP", Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2+ was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 microg L(-1) solution nebulized by means of a USN and for 78Se/80Se in 100 microg L(-1) solution nebulized by means of a Meinhard nebulizer.  相似文献   

14.
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.  相似文献   

15.
The determination of arsenic (75As) was studied using an ICP-MS equipped with collision cell technology (CCT). Different mixtures of gases (He and H2) were tested using HCl conditions and a He flow rate of 4 mL min−1 was found to be suitable for the removal of the poly-atomic spectral interference [40Ar35Cl]+. Trueness of the optimised method has been evaluated in both standard and CCT modes on six certified reference materials in foodstuffs of animal origin and on three external proficiency testing schemes (FAPAS). The results obtained generally coincided with the certified values, except for CCT mode in some categories of samples (meat, mussels and milk powder), for which a positive bias on results was observed due to the formation of poly-atomic interferences within the collision cell. The main interferences were studied and their contributions estimated. [58Fe16O1H]+ and [74Ge1H]+ were the most significant interferences formed in the cell. Finally, different parameters (e.g. hexapole and quadrupole bias voltage, nebuliser gas flow) were optimised to try to attenuate these interferences.  相似文献   

16.
Forensic laboratories routinely conduct analysis of glass fragments to determine whether or not there is an association between a fragment(s) recovered from a crime scene or from a suspect to a particular source of origin. The physical and optical (refractive index) properties of the fragments are compared and, if a “match” between two or more fragments is found, further elemental analysis can be performed to enhance the strength of the association. A range of spectroscopic techniques has been used for elemental analysis of this kind of evidence, including inductively coupled plasma mass spectrometry (ICP-MS). Because of its excellent sensitivity, precision, and accuracy, several studies have found that ICP-MS methods (dissolution and laser-ablation) provide the best discrimination between glass fragments originating from different sources. Nevertheless, standard unit-resolution ICP-MS instruments suffer from polyatomic interferences including 40Ar16O+, 40Ar16O1H+, and refractory oxide 40Ca16O+ that compromise measurements of trace levels of Fe56+ and Fe57+, for example. This is a drawback in the analysis of glass fragments because iron has been previously identified as a good discriminating element. Currently, several techniques are available that enable reduction of such interferences. However, there are no data comparing detection limits of iron in glass using those techniques. The aim of this study was to compare, the analytical performance of high-resolution sector field inductively coupled plasma mass spectrometry (HR-SF-ICP-MS) and quadrupole ICP-MS equipped with a dynamic reaction cell (DRC-ICP-MS), for the detection of iron in glass, in terms of accuracy, precision, and method detection limits (MDLs). Analyses were conducted using conventional acid-digestion and laser-ablation methods. For laser-ablation analyses, carrier gases were compared to assess the effect on detection limits in the detection of iron isotopes. Iron polyatomic interferences were reduced or resolved by using a dynamic reaction cell and high-resolution ICP-MS. MDLs as low as 0.03 μg g−1 and 0.14 μg g−1 were achieved in laser-ablation and solution-based analyses, respectively. Use of helium as carrier gas improved detection limits for both iron isotopes in medium-resolution HR-SF-ICP-MS and in DRC-ICP-MS.  相似文献   

17.
The analysis of some Italian mineral waters by ICP-MS has revealed errors in the determination of As and Cr in natural effervescent or carbonated waters due to the presence of dissolved inorganic carbon (DIC). This leads to overestimate As and Cr in 1% (v/v) HNO3 acidified samples, analysed within 1-2 h after the acidification. The overestimation of As concentration is caused by matrix interferences producing a signal enhancement due to the presence of dissolved inorganic carbon. This effect is analogous to that observed in the presence of organic carbon and occurs at millimolar DIC levels. The overestimation of Cr concentration is due to the 40Ar12C+ species interfering with 52Cr+ despite the use of the octopole reaction system. The optimization of the He flow in the collision cell can solve the latter problem, but the required increase in the flow rate decreases the sensitivity of the ICP-MS technique. The observed effects in CO2 rich mineral waters and artificial NaHCO3 solutions suggest that 5-10 mM DIC levels may affect the determination of As and Cr concentration in thermal waters, rivers, lakes and groundwaters.  相似文献   

18.
A mass spectrometric method for the determination of chlorine, bromine and iodine species of humic substances (HS) has been developed by coupling a HPLC system with ICP-MS. Using size exclusion chromatography, the method was applied to the characterization of natural water samples (ground water, seepage water from soil, brown water) and a sewage water sample. Quantification of iodine/HS species was carried out by the on-line isotope dilution technique, which was not possible for bromine and chlorine species because of mass spectroscopic interferences by using a quadrupole ICP-MS. Characteristic fingerprints of the halogen/HS species, correlated with the corresponding UV chromatogram, were obtained dependent on the different origin of HS. Biological influences were indicated when following changes of the iodine/HS species composition by aging. The formation of iodine/HS species from inorganic iodide was investigated by labelling experiments with an 129I spike solution, resulting in the finding that specific HS fractions are preferably iodinated.  相似文献   

19.
Ti is frequently used in implants and prostheses and it has been shown before that the presence of these in the human body can lead to elevated Ti concentrations in body fluids such as serum and urine. As identification of the exact mechanisms responsible for this increase in Ti concentrations, and the risks associated with it, are not fully understood, it is important to have sound analytical methods that enable straightforward quantification of Ti levels in body fluids (for both implanted and non-implanted individuals). Until now, only double-focusing sector field ICP-mass spectrometry (SF-ICP-MS) offered limits of detection that are good enough to deal with the very low basal levels of Ti in human serum. This work reports on the development of a novel method for the accurate and precise determination of trace levels of Ti in human serum samples, based on the use of ICP-MS/MS. O2 and NH3/He have been compared as reaction gases. While the use of O2 did not enable to overcome all spectral interferences, it has been shown that conversion of Ti+ ions into Ti(NH3)6+ cluster ions by using NH3/He as a reaction gas in an ICP-QQQ-MS system, operated in MS/MS mode, provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L−1 (instrumental detection limit obtained for the most abundant Ti isotope). The accuracy of the method proposed was evaluated by analysis of a Seronorm Trace Elements Serum L-1 reference material and by comparing the results obtained with those achieved by means of SF-ICP-MS. As a proof-of-concept, the newly developed method was successfully applied to the determination of Ti in serum samples obtained from individuals with and without Ti-based implants. All results were found to be in good agreement with those obtained by means of SF-ICP-MS. The typical basal Ti level in human serum was found to be <1 μg L−1, while values in the range of 2–6 μg L−1 were observed for implanted patients.  相似文献   

20.
A method for classification of the potential spectral interferences in inductively coupled plasma mass spectrometry (ICP-MS) was proposed based on statistical assessment of the interfering signals. The concept was applied to investigate the variety of spectral interferences over the isotopes of Rh, Pd and Pt concerning their analysis in road dust samples. For the significant interferences the applicability of mathematical corrections using two alternative algorithms were studied by uncertainty budget analysis and the approach resulting in lower combined uncertainty of the corrected signals was selected. Further the uncertainty evaluation was used for assessment of the most appropriate Pd isotope to be measured. The adequateness of the mathematical corrections for Rh and Pd was highly relevant to the number of elements causing spectral interferences and the relative analyte/interferent concentrations. This was overcome by preliminary road dust leaching with 0.35 mol l−1 hydrochloric acid. Interferents present as easily soluble salts were substantially removed form the samples while the platinum group metals were not leached which allowed a relative analyte preconcentration to be obtained. For the leached samples the isotopes of Rh and Pd were still spectrally interfered from Sr, Y and Pb but at considerably lesser degree thus after mathematical correction the ICP-MS analysis of Rh, Pd and Pt was reliable and robust using the isotopes 103, 105 and 195, respectively. The method was validated via an alternative analysis based on selective separation of the platinum group metals by microwave-assisted cloud point extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号