首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Interaction between tetramethylcucurbit[6]uril (TMeQ[6], host) with hydrochloride salts of 2-phenylpridine (G1), 2-benzylpyridine (G2), and 4-benzylpyridine (G3) (guests) have been investigated by using 1H NMR spectroscopy and electronic absorption spectroscopy and theoretical calculations. The 1H NMR spectra analysis established an interaction model in which the host selectively included the phenyl moiety of the HCl salt of the above three guests, and formed inclusion complexes with a host-guest ratio of 1:1. Absorption spectrophotometric analysis allowed quantitative measurement of the stability of these host-guest inclusion complexes. Particularly, we have established a competitive interaction in which one host-guest inclusion complex pair is much more stable than another host-guest inclusion complex pair. The stability constants for the three host-guest inclusion complexes of TMeQ[6]-G1, TMeQ[6]-G2, and TMeQ[6]-G3 are approximately 2x10(6), 60.7, and 19.9 mol-1.L, respectively. To understand how subtle differences in the structure of the title guests lead to a significant difference in the stability of the corresponding host-guest inclusion complexes with the TMeQ[6], ab initio theoretical calculations have been performed, not only for the gas phase but also the solution phase (water as solvent) in all cases. The calculation results revealed that when the phenyl moiety of the three pyridine derivate guests was included, the host-guest complexation reached the minimum, and the corresponding energy differences for the formation of the title host-guest inclusion complexes are qualitatively consistent with the experimental results.  相似文献   

2.
We explored the use of cucurbiturils to form inclusion complexes to overcome the solubility problems of kinetin, a plant cytokinin. Inclusion complexes between kinetin and Q[7], TMeQ[6] and HMeQ[6] in aqueous solution and in solid state were investigated by phase solubility studies, 1H NMR and IR. The effects of pH and temperature on complex stability were also investigated. Phase solubility studies showed that kinetin solubility increased in a linear fashion as a function of Q[7] and TMeQ[6] concentrations. However, kinetin solubility increased first, then decreased as the HMeQ[6] concentration increased, and the maximum solubility of kinetin was achieved at 4.95 mM in HMeQ[6]. The solubility of kinetin as well as the stability constant of its complex with Q[7] were affected by the pH of the medium. The thermodynamic parameters of the complex formation were also determined, and it showed that the formation of the inclusion complexes between kinetin and Q[7] was enthalpy controlled, suggesting that hydrophobic and van der Waals interactions were the main driving forces. Moreover, we found that the size of the cavity of cucurbituril played an important role in the association process. The formation of inclusion complexes between Q[7], TMeQ[6] and HMeQ[6] with kinetin was confirmed by 1H NMR, and IR spectroscopy showed the presence of inclusion complexes in solid state. Our results demonstrated that the complexation of kinetin with Q[n] could be used to improve the solubility of kinetin in aqueous solution.  相似文献   

3.
瓜环与喹啉衍生物包结配合行为研究   总被引:1,自引:0,他引:1  
利用1H NMR以及荧光技术研究了六、七、八元瓜环与2-苯基喹啉、N-正丙基溴化异喹啉、3-氨基喹啉及7,8-苯并喹啉的相互作用.两种方法的考察结果均表明,2-苯基喹啉能与这3种瓜环发生相互作用,其中六、七元瓜环与2-苯基喹啉形成1∶1的稳定包结配合物,包结常数分别为1.6×104和3.2×103L/mol.八元瓜环能与2-苯基喹啉形成1∶2包结物.1H NMR结果还表明,3种瓜环均能与N-正丙基溴化异喹啉相互作用,其化学计量比均为1∶2;七元瓜环与7,8-苯并喹啉相互作用,化学计量比约为1∶1.荧光法也表明八元瓜环能与N-正丙基溴化异喹啉、3-氨基喹啉及7,8-苯并喹啉发生相互作用,并且荧光强度随瓜环浓度增加而下降,其化学计量比为1∶2.同时,讨论了上述主客体包结配合物的作用模式.  相似文献   

4.
[reaction: see text] The complexation of p-sulfonatocalix[4]arene (CX4) with 2,3-diazabicyclo[2.2.1]hept-2-ene (1), 2,3-diazabicyclo[2.2.2]oct-2-ene (2), 2,3-diazabicyclo[3.2.2]non-2-ene (3), 1-methyl-4-isopropyl-2,3-diazabicyclo[2.2.2]oct-2-ene (4), and 1-phenyl-2,3-diazabicyclo[2.2.2]oct-2-ene (5) was studied in D2O at pD 7.4 by 1H NMR spectroscopy. The formation of deep inclusion complexes was indicated by large upfield 1H NMR shifts of the guest protons (up to 2.6 ppm), which were also used to assign, in combination with 2D ROESY spectra, a preferential inclusion of the isopropyl group of 4 and a dominant inclusion of the azo bicyclic residue for 5. The bicyclic azoalkanes 1-3 showed exceptionally high binding constants on the order of 1000 M(-1), 1-2 orders of magnitude larger than for previously investigated noncharged organic guest molecules. The strong binding was attributed to the spherical shape complementarity between the guest and the conical cavity offered by CX4. Interestingly, although the derivatives 4 and 5 are more hydrophobic, they showed a 2-3 times weaker binding, which was again attributed to the deviation from spherical shape in these bridgehead-substituted derivatives. The preferential inclusion of the hydrophilic but spherical bicyclic residue of 5 rather than the hydrophobic aromatic phenyl group provides a unique observation in aqueous host-guest chemistry and corroborates the pronounced spherical shape affinity of CX4.  相似文献   

5.
The host-guest stability constants for the inclusion of a series of small neutral polar organic guests in cucurbit[7]uril (CB[7]) have been determined in aqueous solution by (1)H NMR titrations. The dependence of the stability constant on the nature of the guests indicates that hydrophobic and dipole-quadrupole interactions are responsible for the binding. The complexation-induced chemical shift changes in the guest proton resonances, coupled with energy-minimization calculations, suggest that the guests are located such that their dipole moment is aligned perpendicular with the quadrupole moment of the CB[7] host. The stability constants for acetone and acetophenone decrease in the presence of Na(+) or K(+) cations as a result of cation capping of the CB[7] portals.  相似文献   

6.
Since the structure of cucurbituril(Q[6]) has been determined in 1981[1] and its homologues cucurbit [n = 5,7,8 and 10]uril(Q[5], Q[7], Q[8] and Q[10]) have been reported in 2000[2,3], 2002[4], a series of host-guest complexes[5—7], novel supramolecular as-semblies[8—10], molecular encapsulates[11,12] and mo-lecular containers[13,14] based on Q[n] have been stud-ied extensively. All cucurbituril homologues have common char-acteristic features, i.e. hydrophobic cavity, and polar carbonyl gr…  相似文献   

7.
The formation of inclusion complexes between cucurbit[7]uril (CB[7]) and ferrocene and its derivatives has been investigated. The X-ray crystal structure of the 1:1 inclusion complex between ferrocene and CB[7] revealed that the guest molecule resides in the host cavity with two different orientations. Inclusion of a set of five water-soluble ferrocene derivatives in CB[7] was investigated by 1H NMR spectroscopy and calorimetric and voltammetric techniques. Our data indicate that all neutral and cationic guests form highly stable inclusion complexes with CB[7], with binding constants in the 10(9)-10(10) M(-)(1) and 10(12)-10(13) M(-1) ranges, respectively. However, the anionic ferrocenecarboxylate, the only negatively charged guest among those surveyed, was not bound by CB[7] at all. These results are in sharp contrast to the known binding behavior of the same guests to beta-cyclodextrin (beta-CD), since all the guests form stable inclusion complexes with beta-CD, with binding constants in the range 10(3)-10(4) M(-1). The electrostatic surface potentials of CB[6], CB[7], and CB[8] and their size-equivalent CDs were calculated and compared. The CD portals and cavities exhibit low surface potential values, whereas the regions around the carbonyl oxygens in CBs are significantly negative, which explains the strong affinity of CBs for positively charged guests and also provides a rationalization for the rejection of anionic guests. Taken together, our data suggest that cucurbiturils may form very stable complexes. However, the host-guest interactions are very sensitive to some structural features, such as a negatively charged carboxylate group attached to the ferrocene residue, which may completely disrupt the stability of the complexes.  相似文献   

8.
Three guests with two moiety probes for different Cucurbit[n = 6-8]urils have been synthesized. They are N-(2-methylenethiophen)-adamataneamine, N-(2-methylene pyrrole)-adamataneamine and N-(2-methylenefurfuran)-adamataneamine. The probes are methyle-nepyridyl typically for Q[6] and adamataneamine typically for Q[7]. The host-guest complexes of Cucurbit[n = 6-8]urils with these guests have been investigated by using NMR techniques and ESMS method. Also, thermoanalysis has been used for exploring relationship of enthalpy and stability of the host-guest complexes.  相似文献   

9.
The newly prepared water-soluble naphthalene tweezer 2a and anthracene clip 4a (substituted both with lithium methanephosphonate groups in the central spacer unit) undergo an unexpected self-assembly in aqueous solution. The highly ordered intertwined structures of the self-assembled dimers [2a]2 and [4a]2 were elucidated by quantum chemical 1H NMR shift calculations. 2a and 4a form extremely stable host-guest complexes with N-methylnicotinamide 8 in methanol and water as well. According to the thermodynamic parameters determined by 1H NMR titration experiments at various temperatures the self-assembly of 2a and 4a and their strong binding to NMNA 8 observed in aqueous solution are enthalpy driven (DeltaH < 0); the enthalpic driving force is partially compensated by an unfavorable entropy (TDeltaS < 0). Self-assembly and the host-guest binding are therefore beautiful examples of the nonclassical hydrophobic effect.  相似文献   

10.
基于柱[5]芳烃主客体包结构筑分子响应型超分子水凝胶   总被引:1,自引:0,他引:1  
主客体相互作用是在水溶液中与大环主体分子形成稳定的包结物的理想驱动力.以功能化的苯并咪唑衍生物为客体(M),水溶性柱[5]芳烃为主体构建了一种分子响应型超分子水凝胶.通过1H NMR, 2D NOESY和扫描电子显微镜(SEM)研究了水凝胶的成凝胶机理.有趣的是,主客体包结作用、柱[5]芳烃间有序的"外腔"π-π相互作用和分层堆积对于获得超分子水凝胶是必不可少的,非共价键相互作用的动态可逆性使凝胶体系对温度变化/化学刺激产生响应.此外,加入竞争性客体己二腈(ADN)/百草枯(PQ)后,柱[5]芳烃基水凝胶可转化为溶胶.因此,该超分子水凝胶可以选择性识别有机分子.  相似文献   

11.
The macrocyclic host cucurbit[7]uril forms very stable complexes with the diprotonated (K(CB[7])(1) = 1.8 x 10(8) dm(3) mol(-1)), monoprotonated (K(CB[7])(2) = 1.0 x 10(7) dm(3) mol(-1)), and neutral (K(CB[7])(3) = 1.2 x 10(3) dm(3) mol(-1)) forms of the histamine H(2)-receptor antagonist ranitidine in aqueous solution. The complexation behaviour was investigated using (1)H NMR and UV-visible spectroscopy as a function of pH and the pK(a) values of the guest were observed to increase (DeltapK(a1) = 1.5 and DeltapK(a2) = 1.6) upon host-guest complex formation. The energy-minimized structures of the host-guest complexes with the cationic guests were determined and provide agreement with the NMR results indicating the location of the CB[7] over the central portion of the guest. The inclusion of the monoprotonated form of ranitidine slows the normally rapid (E)-(Z) exchange process and generates a preference for the (Z) isomer. The formation of the CB[7] host-guest complex greatly increases the thermal stability of ranitidine in acidic aqueous solution at 50 degrees C, but has no effect on its photochemical reactivity.  相似文献   

12.
合成和表征了4个碳链长度不同二溴化1,n-亚烷基-二-2-甲基吡啶(客体,n=6,8,10,12),利用1H NMR技术、热重分析及紫外吸收光谱法考察了这些客体与七、八元瓜环(主体)的相互作用,以及形成的主客体包结物的结构特征.研究结果表明4个客体与七、八元瓜环形成不同的主客体包合物.七元瓜环可穿梭在线性客体分子上形成类轮烷型或哑铃型主客体包合物;而由于具有较大的空腔,八元瓜环可包容弯曲状的整个客体分子.  相似文献   

13.
We report the first quantum mechanical calculations of p-tert-butylcalix[4]arene inclusion complexes in the crystalline state with geometrical aspects demonstrating good agreement with experiment, while comparison of the configurations calculated for an isolated complex and in the crystal, illustrate that crystal packing forces contribute to the observed structure of the host-guest assembly.  相似文献   

14.
CB[n](n=6-8) is a family of synthetic macrocyclic host molecules composed of n glycoluril units, which can be employed as molecular reactor. N-phenyloxypropyl-N'-ethyl-4,4'-bipyridium (1) was designed to form a host-guest inclusion complex with CB[n](n=6-8), subsequently, the bromination reaction of 1 and its corresponding inclusion complexes was investigated in this work. In the case of 1/CB[8], the folded including mode is quite helpful to acquire 1-bormination product completely through intramolecular charge transfer (ICT), and CB[8] can provide a safe bromination environment for 1.  相似文献   

15.
李明轩  柳利  柳士忠 《有机化学》2004,24(9):1086-1090
用自识别自组装法合成了三种新型对叔丁基杯[8]芳烃/12-钨(钼)磷(硅)杂多酸超分子包合物,C88H115~116O8[XM12-040](X=P,Si;M=w,Mo),用元素分析,IR,UV,1H NMR,31P NMR,ESR,XPS,Fluorescence光谱进行了表征.结果表明,对叔丁基杯[8]芳烃主体化合物与12-钨(钼)磷(硅)杂多酸客体分子发生了主-客体包合反应,生成了稳定的发光包合物.  相似文献   

16.
New palladium and platinum metallacycles have been synthesized by reaction between a 2,7-diazapyrenium-based ligand and Pd(II) and Pt(II) complexes. The inclusion complexes between the metallacycles and polycyclic aromatic hydrocarbons (PAHs) in CD(3)NO(2) and D(2)O were studied by NMR spectroscopy. The structures of the inclusion complexes of the Pt metallacycle as host with pyrene, phenanthrene, and triphenylene were confirmed by single crystal X-ray crystallography. The association constants between the Pt metallacycle and the selected PAHs were determined in CH(3)CN following the characteristic charge-transfer band displayed in their UV/Vis absorption spectrum. Although in aqueous solution all the complexes showed a 1:1 stoichiometry, in CH(3)CN the Job plot indicated a 2:1 stoichiometry for complexes with triphenylene and benzo[a]pyrene. The estimated association constants in water correlate with the hydrophobicity of the PAH, indicating that hydrophobic forces play an important role in the complexation process.  相似文献   

17.
Under reversed-phase high-performance liquid chromatographic conditions [Spherisorb ODS 1 stationary phase, UV detection at 254 nm, and acetonitrile-dichloromethane-acetic acid-methyl-tert-butylether (84.6/4.5/0.9/10, v/v/v/v) as the mobile phase], adding p-tert-butylcalix[8] (10(-5)-3.10(-5))-[12]arenes (10(-5)-4.10(-5) mol/L) to the mobile phase leads to decreased sorption of aromatic solutes on the surface of the sorbent because of the formation of host-guest inclusion complexes between the calixarenes and the aromatic molecules. Stability constants of the complexes (781-9338M(-1)) are determined from the relationship between the solute capacity factors and the calixarene concentration in the mobile phase.  相似文献   

18.
《中国化学快报》2023,34(7):108040
The binding interactions between 4-aminopyridine (4-AP) and a series of cucurbit[n]urils (Q[5], Q[6], TMeQ[6], Q[7], Q[8]) have been studied using 1H NMR spectroscopy, UV–vis absorption spectroscopy, isothermal titration calorimetry (ITC) and X-ray crystallography. The data indicates that the Q[5]@4-AP complex exhibits exo binding, which is not observed in the other four host-guest complexes. Furthermore, X-ray crystallography clearly reveals how the Q[n]s bind with 4-AP to form complexes, for example Q[5] forms an outer-surface complex, whilst Q[6], TMeQ[6] and Q[7] formed 1:1 host and guest type complexes, and Q[8] formed a stable 1:2 ternary complex due to its large cavity, which can accommodate two 4-AP molecules.  相似文献   

19.
p-Bu(t)-calix[5]arene forms crystalline inclusion complexes with o- and m-carboranes in toluene or dichloromethane-hexane, but not with the p-isomer, the extended structures being based on 1 : 1 host-guest supermolecules, with the p-Bu(t)-substituents creating a snug fit for o- and m-carborane; p-carborane forms a highly hexane soluble complex, induced by grinding, which crystallizes as fibres. Solution phase studies showed the presence of a 1 : 1 host-guest stoichiometry with all three isomeric carboranes as determined from Job plots. The association constants for the o- and m-carborane complexes are 6.4 +/- 0.3 M(-1) and 3.8 +/- 0.1 M(-1) respectively, whereas the p-isomer is only weakly associated. Competition experiments involving all three isomers show rapid exchange on the NMR time scale, and no selectivity in solution is evident. Selective association involving the o- and m-isomers in the solid state is therefore remarkable, and it is a manifestation of crystal packing forces which embodies the differences in dipole moments of the carboranes.  相似文献   

20.
When an intramolecular cavity exists in a molecule, it can trap another chemical species to form a host-guest complex. We examine the formation of such an inclusion complex with cucurbit[n]uril (CBn, n = 6, 7) as the host to trap alkali metal or ammonium ions as the guest, by electrospray ionization mass spectrometry (ESI-MS). The results show that the inclusion complexes are formed between the three-dimensional cylinder of CBn hosts and the guest cations. Selectivity of the complex formation is dependent both on (1) ion-dipole interactions between the cylindrical portal of the CBn hosts and the guest cations and (2) the hydrophobic interactions at the inner cavity of CBn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号