首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The integration of high-performance RE-TM (NdFeB and SmCo) hard magnetic films into micro-electro-mechanical-systems (MEMS) requires their patterning at the micron scale. In this paper we report on the applicability of standard micro-fabrication steps (film deposition onto topographically patterned substrates, wet etching and planarization) to the patterning of 5-8 μm thick RE-TM films. While NdFeB comprehensively fills micron-scaled trenches in patterned substrates, SmCo deposits are characterized by poor filling of the trench corners, which poses a problem for further processing by planarization. The magnetic hysteresis loops of both the NdFeB and SmCo patterned films are comparable to those of non-patterned films prepared under the same deposition/annealing conditions. A micron-scaled multipole magnetic field pattern is directly produced by the unidirectional magnetization of the patterned films. NdFeB and SmCo show similar behavior when wet etched in an amorphous state: etch rates of approximately 1.25 μm/min and vertical side walls which may be attributed to a large lateral over-etch of typically 20 μm. Chemical-mechanical-planarization (CMP) produced material removal rates of 0.5-3 μm/min for amorphous NdFeB. Ar ion etching of such films followed by the deposition of a Ta layer prior to film crystallization prevented degradation in magnetic properties compared to non-patterned films.  相似文献   

2.
The effects of magnetic separation, coupling treatment, lubricating treatment, preform and biaxial molding on the density and magnetic properties of bonded NdFeB magnet were investigated. The results demonstrate that magnetic separation separates the powders with low coercive force; coupling treatment improves the interfaces between the powders and the binders; decrease in volume fraction of the binder increases magnetic properties of the magnet; granular arrangement improves both the magnetic and mechanical properties when powders are arranged in certain size; lubricating treatment improves the formability of the magnet and preform and biaxial molding improves both density and magnetic properties greatly. Combining these methods, the density of the bonded NdFeB magnet can reach 6.52 g/cm3 and the maximum energy product can reach 114 kJ/m3.  相似文献   

3.
Ta (100 nm)/NdFeB (5 μm)/Ta (100 nm) films have been deposited onto Si substrates using triode sputtering (deposition rate ∼18 μm/h). A 2-step procedure was used: deposition at temperatures up to 400 °C followed by ex-situ annealing at higher temperatures. Post-deposition annealing temperatures above 650 °C are needed to develop high values of coercivity. The duration of the annealing time is more critical in anisotropic samples deposited onto heated substrates than in isotropic samples deposited at lower temperatures. For a given set of annealing conditions (750 °C/10′), high heating rates (?2000 °C/h) favour high coercivity in both isotropic and anisotropic films. The shape and size of Nd2Fe14B grains depend strongly on the heating rate.  相似文献   

4.
A 50 μm Al–Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 °C. The morphology and composition of the Al–Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al–Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al–Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al–Cr coating moves positively from −0.67 to −0.48 V, which is in accordance with Nyquist and Bode plots. The Al–Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets.  相似文献   

5.
Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 °C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 °C, producing powder with a remanence of 1.10(±0.02) T and an intrinsic coercivity of 800 (±16) kA m−1 and giving a (BH)max of 129(±2.5) kJ m−3.  相似文献   

6.
The magnetic powders for sintered NdFeB magnets have been prepared by using the strip casting (SC), hydrogen decrepitation (HD) and jet milling (JM) techniques. The effects of powder flowability and addition of a lubricant on the alignment degree and the hard magnetic properties of sintered magnets have been studied. The results show that the main factor affecting powder flowability is the aggregation of magnetic particles for powders in a loose state, but it is the friction between the powder particles for powders that are in a compact state. The addition of a lubricant with suitable dose can slightly prevent the congregating of powders, obviously decrease the friction between the powder particles, improve the powder flowability, and increase the alignment degree, remanence and energy product density of sintered magnets. Mixing a suitable dose of lubricant and adopting rubber isostatic pressing (RIP) with a pulse magnetic field, we have succeeded in producing the sintered NdFeB magnet with high hard magnetic properties of Br=14.57 KG, jHc=14.43 KOe, (BH)max=51.3 MGOe.  相似文献   

7.
This study describes an attempt to produce NdFeB magnets that are insensitive to the sintering temperature. It was found that addition of Zr to NdFeB magnets significantly augmented the thermal stability of this magnetic material during sintering at high temperature even at industrial scale. The best sintered magnets were produced by jet-milling the powder (to achieve an average 3.4 μm particle size), and then aligned, pressed and sintered under argon at 1100 °C for 3 h followed by appropriate heat treatment. The magnetic properties of the resulting magnets were: (BH)m=403.8 kJ m−3 (±4.7 kJ m−3), Br=1430 mT (±9 mT) and iHc=907 kA m−1 (±12 kA m−1). Large grain growth, in excess of 100 μm in the Zr-free magnets, was observed during sintering at 1100 °C. This did not occur in the presence of Zr. These observations imply that the sensitivity of this class of magnets to high sintering temperatures is greatly reduced by Zr addition. Corrosion resistance of NdFeB was therefore significantly improved by the addition of small amounts of Zr.  相似文献   

8.
We observed the magnetic domains of a magnetic card by using the bismuth-substituted yttrium iron garnet (Bi-YIG; Bi1Y2Fe5O12) thin films as the indicator films. The magnetic domains’ dependence on the preparation conditions of the garnet thin film crystals was visualized by using a magneto-optical microscope. Garnet thin films were fabricated on glass substrates using a metal-organic decomposition method (MOD). We found that bigger Faraday rotation was measured in the better crystallized indicator films. Polycrystalline Bi-YIG thin films were successfully obtained for the annealing temperature of 700 °C and an annealing time of 1 h. The thickness of the film was about 47 nm for a single coating during the MOD process. The Faraday-rotation angle of the films was estimated as −2.47°/μm and the angle was comparable to other synthesis methods, such as the sol-gel and the RF-magnetron sputtering. Using these indicator films, we could image the magnetic domains of magnetic materials.  相似文献   

9.
Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si(100) substrates,and subsequently annealed in vacuum at different temperatures for different time.It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films.Interestingly,the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film.The high coercivity of 24.1 kOe(1 Oe = 79.5775 A/m) and remanence ratio(remanent magnetization/saturation magnetization)of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K.In addition,the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well.The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at1023 K.  相似文献   

10.
NdFeB films with Nd compositions varied from 13.34 to 24.30 at% were deposited by DC gradient sputtering using targets Nd12.5Fe71.5B16 and Nd. The hard magnetic properties, grain growth direction and magnetic domain structures were dramatically influenced by Nd composition. The samples with intermediate Nd concentrations exhibited optimal magnetic properties and microstructures, such as large squareness ratio over 0.9, large energy product up to 174 kJ/m3, and vertical domain structure. However, the samples with higher and lower Nd compositions showed almost isotropic loops. (0 0 l) as main X-ray diffraction peaks in the optimal Nd composition region indicated most of Nd2Fe14B grains with c-axis perpendicular to the film plane, while NdFeB grains in other region are almost random growth. The good magnetic properties can be attributed to the vertical growth of Nd2Fe14B grains.  相似文献   

11.
Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of jHc=25.6 kOe, Br=13.2 kG and (BH)max=39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 °C) is –0.53%/°C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors.  相似文献   

12.
Textured composite samples consisting of Nd13.6Fe73.6Ga0.6Co6.6B5.6 (MQU-F™) and micron-sized Fe particles with weight ratios from 100:0 to 70:30 have been prepared by hot deformation. Microstructure studies revealed a layered structure of both phases with the layer normal parallel to the pressing direction. Magnetic measurements showed single-phase hysteresis curves for all samples when measured along the pressing direction, which is also the easy axis of magnetization. Coercivity decreased drastically from 1.32 T for pure NdFeB samples to 0.154 T for a sample with 30 wt% Fe. Magneto-optical Kerr microscopy with a digitally enhanced imaging technique has been used to examine the evolution of magnetic domains in the hard and soft phase during demagnetizing a sample consisting of 70 wt% NdFeB and 30 wt% Fe. It is shown that demagnetization takes place via domain rearrangements within the soft phase, which lead to and support the nucleation of reversed interaction domains at phase boundaries. Also nucleation of interaction domains within the hard magnetic phase could be revealed.  相似文献   

13.
Aqueous colloidal suspension of iron oxide nanoparticles has been synthesized. Z-potential of iron oxide nanoparticles stabilized by citric acid was −35±3 mV. Iron oxide nanoparticles have been characterized by the light scattering method and transmission electron microscopy. The polyelectrolyte/iron oxide nanoparticle thin films with different numbers of iron oxide nanoparticle layers have been prepared on the surface of silicon substrates via the layer-by-layer assembly technique. The physical properties and chemical composition of nanocomposite thin films have been studied by atomic force microscopy, magnetic force microscopy, magnetization measurements, Raman spectroscopy. Using the analysis of experimental data it was established, that the magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers, the size of iron oxide nanoparticle aggregates, the distance between aggregates, and the chemical composition of iron oxide nanoparticles embedded into the nanocomposite films. The magnetic permeability of nanocomposite coatings has been calculated. The magnetic permeability values depend on the number of iron oxide nanoparticle layers in nanocomposite film.  相似文献   

14.
Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10−6 mbar in the temperature range from 400 to 800 °C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J × cm−2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated.Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature.  相似文献   

15.
A novel photonic crystal fiber sensing theory filled with magnetic fluid is proposed based on the change of the MF refractive index under varied magnetic field. The magnetically induced tuning of the magnetic fluid filled PCF propagation properties were investigated by the full-vector finite element method with a perfectly matched layer. Theoretical calculations show that both the effective refractive index and the effective mode area increase vs. the increased magnetic field, and the PCF filled MF with larger d/Λ is more sensitive to magnetic field. When the wavelength λ = 1550 nm, the duty ratio d/Λ = 0.9, d/Λ = 0.6, the effective refractive indexes increase respectively from 1.598279 to 1.617572, from 1.61948 to 1.632484, and the effective mode areas increase respectively from 3.561115 μm2 to 7.052360 μm2, from 6.167494 μm2 to 37.221998 μm2 as the magnetic field changes from 25 Oe to 175 Oe. This scheme provides theoretical foundation to use magnetic field to control light in photonic crystal fiber and also offers a potential method for magnetic field sensing based on the TIR-PCF.  相似文献   

16.
The multiferroic (PMN-PT/CFO)n (n = 1,2) multilayered thin films have been prepared on SiO2/Si(1 0 0) substrate with LNO as buffer layer via a rf magnetron sputtering method. The structure and surface morphology of multilayered thin films were determined by X-ray diffraction (XRD) and atom force microscopy (AFM), respectively. The smooth, dense and crack-free surface shows the excellent crystal quality with root-mean-square (RMS) roughness only 2.9 nm, and average grain size of CFO thin films on the surface is about 44 nm. The influence of the thin films thickness size, periodicity n and crystallite orientation on their properties including ferroelectric, ferromagnetic properties in the (PMN-PT/CFO)n multilayered thin films were investigated. For multilayered thin films with n = 1 and n = 2, the remanent polarization Pr are 17.9 μC/cm2 and 9.9 μC/cm2; the coercivity Hc are 1044 Oe and 660 Oe, respectively. In addition, the relative mechanism are also discussed.  相似文献   

17.
Hydrogenated polycrystalline SixGe1−x films, with a varying silicon fraction x ≤ 0.246, were in situ deposited in an argon and hydrogen mixture at 500 °C using radio frequency sputtering with an aim to develop a material for the bottom cell of a low cost monolithic tandem solar cell. Silicon and germanium atomic compositions of the films were determined by X-ray photoelectron spectroscopy (XPS). Structural evolution revealed by Raman and X-ray diffraction (XRD) indicated that the crystallinity of the films was improved with decreasing silicon fraction, accompanied with an increase of surface roughness verified by atomic force microscopy (AFM). Optical band gaps of these films derived from Tauc plots, which were calculated from reflectance/transmittance measurements, decreased with decreasing silicon fraction. Resistivity of the films, determined by four-point-probe technique, significantly decreased as well. High quality with low thermal budget obtained in this work suggests the films could be used in thin film solar cells on glass.  相似文献   

18.
The magnetization reversal of MnAs epitaxial films on GaAs (0 0 1) substrates was investigated using a Kerr microscope. The direct observation of the change in domain structure under magnetic fields revealed characteristic magnetization reversal process of MnAs films with a ladder-type domain structure. The nucleus of the magnetization reversal region appears and propagates to neighboring α-MnAs lines, and then the ladder-type structures cover all over the surface. Finally the domain wall displacement occurs to expand the domain. The change in magnetic domain reflects the characteristic ridge/groove structures of MnAs films.  相似文献   

19.
Amorphous carbon thin films with quasi vertical nanowall-like morphologies have been synthesized via direct current plasma enhanced chemical vapor deposition on both copper and silicon substrates with acetylene as a carbon precursor. The deposition temperature and pressure were maintained at 750 °C and 5 mbar respectively. The morphology of the as-prepared samples has been investigated with the help of a field emission scanning electron microscope and an atomic force microscope, both revealing nanowall-like morphologies with thicknesses of the walls ∼6-15 nm. The as-prepared carbon nanowalls showed good field electron emission with a turn-on field as low as 1.39 V/μm. The effect of inter-electrode distance on the field electron emission has also been studied in detail.  相似文献   

20.
This paper investigates the effect of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites (50 Hz-1000 kHz). The results showed that the optimum amount of phenolic resin to attain maximum permeability and minimum loss factor at 10 kHz is 0.7 wt% for samples containing iron powder with average particle size ∼150 μm compacted at 800 MPa. In accordance with this resin content, at high frequencies (>300 kHz), the sample with lower particle size ∼10 μm exhibits higher magnetic permeability, higher operating frequencies and lower imaginary part of permeability. With increase in the compaction pressure, specific resistivity decreases and imaginary and real parts of permeability increase at low frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号