首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For insight into the structure and dynamics of phases emerging upon crossing the metastability/instability boundary we monitor with optical microscopy, in real time and in real space, the generation of a dense liquid phase in high-concentration solutions of the protein lysozyme after temperature quenches into thermodynamically defined metastable and unstable regions. We show with this system, which is a poor fit to mean-field assumptions, that the evolution of the structure factor during nucleation is similar to that during spinodal decomposition and reveals no singularity predicted upon crossing the metastability boundary. We introduce two kinetic definitions of the metastability/instability boundary that yield values within approximately 1.5 K, i.e., the boundary appears as an area rather than a line, which is near and above the thermodynamic prediction. Delay times for the appearance of the new phase in the unstable regime are significant, i.e., new-phase growth is hindered by kinetic barriers. While our results agree with predictions of the non-mean-field theories of phase transformations, the experimentally observed behavior is richer than the one envisioned by theory.  相似文献   

2.
d,l-Norleucine is one of only a few molecules whose crystals exhibit a martensitic or displacive-type phase transformation where the emerging phase shows a topotaxial relationship with the parent phase. The molecular mechanism for such phase transformations, particularly in molecular crystals, is not well understood. Crystalline phases that exhibit displacive phase transitions tend to be very similar in structure and energy. Consequently, the development of a force field for such phases is challenging as the phase behavior is determined by subtle differences in their lattice energies and entropies. We report an approach for developing a force field for such phases with an application to d,l-norleucine. The proposed procedure includes calculation of the phase diagram of the crystalline phases as a function of temperature to identify the best force field. d,l-Norleucine also presents an additional problem since in the solid state it exists as a zwitterion that is unstable in vacuo and therefore cannot be characterized using high-level ab initio calculations in the gas phase. However, a stable zwitterion could be obtained using Onsager's reaction-field continuum model for a solvent (SCRF) using both Hartree-Fock and density functional theory. A number of force fields and the various sets of partial charges obtained from the SCRF calculations were screened for their ability to reproduce the crystal structures of the two known phases, alpha and beta, of d,l-norleucine. Selected parameter sets were then employed in free energy minimizations to identify the best set on the basis of a correct prediction of the alpha-beta phase transition. The Williams' nonbonded parameters combined with partial charges from SCRF-Polarized Continuum Model calculation were found to reproduce the structures of the phases accurately and also maintained their stability in extended molecular dynamics simulations in the Parrinello-Rahman constant stress ensemble. Moreover, we were also able to successfully simulate the phase transformation of the beta- to the alpha-phase. The identified force field should enable detailed studies of the phase transformations exhibited by crystals of d,l-norleucine and hence enhance our understanding of martensitic-type transformations in molecular crystals.  相似文献   

3.
We report dynamic Monte Carlo simulations of polymer crystal nucleation initiated by prior spinodal decomposition in polymer solutions. We observed that the kinetic phase diagrams of homogeneous crystal nucleation appear horizontal in the concentration region below their crossovers with the theoretical liquid-liquid spinodal. When the solution was quenched into the temperature beneath this horizontal boundary, the time evolution of structure factors demonstrated the spinodal decomposition at the early stage of crystal nucleation. In comparison with the case without a prior liquid-liquid demixing, we found that the prior spinodal decomposition can regulate the nanoscale small polymer crystallites toward a larger population, more uniform sizes, and a better spatial homogeneity, whereas chain folding in the crystallites seems little affected.  相似文献   

4.
The transition of peptides and proteins from the solution phase into fibrillar structures is a general phenomenon encountered in functional and aberrant biology and is increasingly exploited in soft materials science. However, the fundamental molecular events underpinning the early stages of their assembly and subsequent growth have remained challenging to elucidate. Here, we show that liquid–liquid phase separation into solute‐rich and solute‐poor phases is a fundamental step leading to the nucleation of supramolecular nanofibrils from molecular building blocks, including peptides and even amphiphilic amino acids. The solute‐rich liquid droplets act as nucleation sites, allowing the formation of thermodynamically favorable nanofibrils following Ostwald's step rule. The transition from solution to liquid droplets is entropy driven while the transition from liquid droplets to nanofibrils is mediated by enthalpic interactions and characterized by structural reorganization. These findings shed light on how the nucleation barrier toward the formation of solid phases can be lowered through a kinetic mechanism which proceeds through a metastable liquid phase.  相似文献   

5.
Finding new pathways to novel materials is an open challenge in modern solid-state chemistry. Among the reasons that still prevent a rational planning of synthetic routes is the lack of an atomistic understanding at the moment of phase formation. Metastable phases are, in this respect, powerful points of access to new materials. For the synthetic efforts to fully take advantage of such peculiar intermediates, a precise atomistic understanding of critical processes in the solid state in its many facets, that is, nucleation patterns, formation and propagation of interfaces, intermediate structures, and phase growth, is mandatory. Recently we have started a systematic theoretical study of phase transitions, especially of processes with first-order thermodynamics, to reach a firm understanding of the atomistic mechanisms governing polymorphism in the solid state. A clear picture is emerging of the interplay between nucleation patterns, the evolution of domain interfaces and final material morphology. Therein intermediate metastable structural motifs with distinct atomic patterns are identified, which become exciting targets for chemical synthesis. Accordingly, a new way of implementing simulation strategies as a powerful support to the chemical intuition is emerging. Simulations of real materials under conditions corresponding to the experiments are shedding light onto yet elusive aspects of solid-solid transformations. Particularly, sharp insights into local nucleation and growth events allow the formulation of new concepts for rationalizing interfaces formed during phase nucleation and growth. Structurally different and confined in space, metastable interfaces occurring during polymorph transformations bring about distinct diffusion behavior of the chemical species involved. More generally, stable structures emerge as a result of the concurrence of the transformation mechanism and of chemical reactions within the phase-growth fronts.  相似文献   

6.
7.
We report the structural evolution of zeolitic imidazolate framework-8 (ZIF-8) as a function of time at room temperature. We have identified the different stages of ZIF-8 formation (nucleation, crystallization, growth, and stationary periods) and elucidated its kinetics of transformation. We hypothesize that the observed semicrystalline-to-crystalline transformation may take place via solution- and solid-mediated mechanisms, as suggested by the observed phase transformation evolution and Avrami's kinetics, respectively. A fundamental understanding of ZIF-8 structural evolution as demonstrated in this study should facilitate the preparation of functional metal-organic framework phases with controlled crystal size and extent of crystallinity.  相似文献   

8.
We present a computer simulation study on crystal nucleation and growth in supersaturated suspensions of mono-disperse hard spheres induced by a triangular lattice substrate. The main result is that compressed substrates are wet by the crystalline phase (the crystalline phase directly appears without any induction time), while for stretched substrates we observe heterogeneous nucleation. The shapes of the nucleated crystallites fluctuate strongly. In the case of homogeneous nucleation amorphous precursors have been observed [T. Schilling et al., Phys. Rev. Lett. 105(2), 025701 (2010)]. For heterogeneous nucleation we do not find such precursors. The fluid is directly transformed into highly ordered crystallites.  相似文献   

9.
The usual derivation of classical nucleation theory is inappropriate for crystal nucleation. In particular, it leads to a seriously flawed estimate of the pressure inside a critical nucleus. This has consequences for the prediction of possible metastable phases during the nucleation process. In this paper, we reanalyze the theory for crystal nucleation based on the thermodynamics of small crystals suspended in a liquid, due to Mullins (J. Chem. Phys. 1984, 81, 1436). As an illustration of the difference between the classical picture and the present approach, we consider a numerical study of crystal nucleation in binary mixtures of hard spherical colloids with a size ratio of 1:10. The stable crystal phase of this system can be either dense or expanded. We find that, in the vicinity of the solid-solid critical point where the crystallites are highly compressible, small crystal nuclei are less dense than large nuclei. This phenomenon cannot be accounted for by either classical nucleation theory or by the Gibbsian droplet model.  相似文献   

10.
Using computer simulations, we investigate the homogeneous crystal nucleation in suspensions of colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo simulations using the umbrella sampling technique. We calculate the nucleation rates for the plastic crystal and the aperiodic crystal phase using the kinetic prefactor as determined from event driven molecular dynamics simulations. We find good agreement with the nucleation rates determined from spontaneous nucleation events observed in event driven molecular dynamics simulations within error bars of one order of magnitude. We study the effect of aspect ratio of the dumbbells on the nucleation of plastic and aperiodic crystal phases, and we also determine the structure of the critical nuclei. Moreover, we find that the nucleation of the aligned close-packed crystal structure is strongly suppressed by a high free energy barrier at low supersaturations and slow dynamics at high supersaturations.  相似文献   

11.
One-pot synthesis of high-quality zinc-blende CdS nanocrystals   总被引:5,自引:0,他引:5  
This paper reports a one-pot synthetic method for producing CdS nanocrystals. We have demonstrated that the nanocrystal nucleation and growth stages can be automatically separated in a homogeneous system with the presence of nucleation initiators. Accelerators used for more than 70 years in rubber vulcanization (i.e., tetraethylthiuram disulfides, and 2,2'-dithiobisbenzothiazole) were found to be effective nucleation initiators for CdS nanocrystal synthesis. The as-prepared CdS nanocrystals are highly monodisperse and possess a zinc blende crystal structure. The quantum yield of the band-gap photoluminescence is up to 12% when the surface-trap emission was totally eliminated after a gentle oxidation under laboratory fluorescent light.  相似文献   

12.
Mechanism of the lamellar crystalline phase formation of distearoyl‐phosphatidylethanolamine (DSPE) dispersed in excess glycerol has been examined by differential scanning calorimetry. It was found that transformation of liquid‐crystal phase to a crystalline phase must be mediated by a lamellar‐gel phase. Further examination of the kinetic phase behavior using Avrami and Tobin models suggested a single dimensional growing pattern and a three‐step mechanism of the crystallization, consisting of nucleation, normal growth, and restricted growth.  相似文献   

13.
Nanocrystalline YMnO(3) has been prepared by wet chemical synthesis routes to obtain crystallites with sizes from 20 nm to bulk material. The crystal structure of hexagonal YMnO(3) nanocrystallites smaller than 80 nm deviates from bulk material in terms of unit cell distortion and unit cell volume. The ferrielectric displacements of Y(3+) cations along the polar c-axis decays progressively with decreasing size below 100 nm. Indications of weak ferromagnetism in the form of a narrow hysteresis loop and enhanced magnetic susceptibility below 43 K in 20 nm YMnO(3) nanoparticles is attributed to extrinsic effects. Low-temperature annealing of the 20 nm crystallites in an oxidizing atmosphere removed all traces of ferromagnetism, showing that this is not a size-induced property. Finally, formation of the competing metastable orthorhombic phase and the thermodynamically stable hexagonal phase is discussed with respect to oxidizing or reducing conditions during synthesis.  相似文献   

14.
In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions.  相似文献   

15.
Consideration is given to the effect of size on the thermodynamic stability in situations where two or more phase variants compete in the course of a phase transformation. It is found that, pending on material parameters, a situation can arise where the stabilities of the competing phases invert with size. Such a size induced stability inversion can have a profound influence on phase development in general connecting also with the kinetics of the phase transformation. Specifically, this newly considered combination of interrelated thermodynamic (stability) and kinetic (rates) factors can provide an explanation for the frequently experienced dominance of metastable phases (the century old Ostwald Stage Rule). When applied to polymers, as in the example of polyethylene, it provides a new outlook for polymer crystallisation. Amongst others it creates a unified approach for the two, so far largely disconnected areas of chain folded and extended chain type crystallisation incorporating (not contradicting!) existing approaches within a widened framework.  相似文献   

16.
One of the most intriguing problems of heterogeneous crystal nucleation in droplets is its strong enhancement in the contact mode (when the foreign particle is presumably in some kind of contact with the droplet surface) compared to the immersion mode (particle immersed in the droplet). Heterogeneous centers can have different nucleation thresholds when they act in contact or immersion modes. The underlying physical reasons for this enhancement have remained largely unclear. In this paper we present a model for the thermodynamic enhancement of heterogeneous crystal nucleation in the contact mode compared to the immersion one. To determine if and how the surface of a liquid droplet can thermodynamically stimulate its heterogeneous crystallization, we examine crystal nucleation in the immersion and contact modes by deriving and comparing with each other the reversible works of formation of crystal nuclei in these cases. The line tension of a three-phase contact gives rise to additional terms in the formation free energy of a crystal cluster and affects its Wulff (equilibrium) shape. As an illustration, the proposed model is applied to the heterogeneous nucleation of hexagonal ice crystals on generic macroscopic foreign particles in water droplets at T = 253 K. Our results show that the droplet surface does thermodynamically favor the contact mode over the immersion one. Surprisingly, the numerical evaluations suggest that the line tension contribution (from the contact of three water phases (vapor-liquid-crystal)) to this enhancement may be of the same order of magnitude as or even larger than the surface tension contribution.  相似文献   

17.
研究了原始凝胶3、3Na2O·Al2O3·10SiO2·200H2O在100℃NaY型沸石向NaPc型沸石转晶的晶化过程,应用电子显微镜、X-射线衍射、TMS-GC和固体高分辨Si29-NMR方法研究了沸石晶核的形成、晶体粒度和外貌的变化及液、固相中硅酸根离子存在状况及转晶中沸石结构的变化,并提出了转晶的液相传质机理。  相似文献   

18.
19.
The nucleation mechanism of crystals of small organic molecules, postulated based on computer simulations, still lacks experimental evidence. In this study we designed an experimental approach to monitor the early stages of the crystallization of ibuprofen as a model system for small organic molecules. Ibuprofen undergoes liquid–liquid phase separation prior to nucleation. The binodal and spinodal limits of the corresponding liquid–liquid miscibility gap were analyzed and confirmed. An increase in viscosity sustains the kinetic stability of the dense liquid intermediate. Since the distances between ibuprofen molecules within the dense liquid phase are similar to those in the crystal forms, this dense liquid phase is identified as a precursor phase in the nucleation of ibuprofen, in which densification is followed by generation of structural order. This discovery may make it possible to enrich poorly soluble pharmaceuticals beyond classical solubility limitations in aqueous environments.  相似文献   

20.
Aspects of phase transition will be surveyed such as are direct consequences of straightforward thermodynamic considerations yet are not normally taken count of in traditional treatments of phase behaviour even if, as is here shown, they can assume special significance in polymers. The central theme will be the common experience that in most materials, but especially in polymers, the state of ultimate thermodynamic stability is hardly ever attained, consequently that we are dealing with metastable states, the issue of metastability thus becoming the main theme of the present treatise. This metastability can manifest itself either through the phase transformation, even in the thermodynamically stable phase, not reaching completion and/or that phases other than those of ultimate stability appear first often taking on a dominant role. The above two strands are being followed through first separately and finally, with the example of polymer crystallisation, in combination. In the course of it all a variety of phase transformations and numerous potentially intriguing consequences are being touched upon. These are encompassing aspects of liquid-liquid phase separation, liquid-crystal formation and crystallisation, the intervention of glass transition, the significance of supercooling, the effect on and influence of the morphology and the connection and interrelation between thermodynamic stability (including metastability) and the rates of the phase transformation, with passing comments on gels and also on some aspects of chain conformation in solution. In the case of the most extensively covered item of crystallisation attention is being drawn to the possibility of stability inversion with phase (here crystal) size. The latter, in terms of ‘Phase Stability Diagrams’, offers a new approach to crystal growth, which in the case of polymers, creates both new perspectives and opens up the possibility of treating so far largely disconnected aspects of the subject within a unifying framework. The survey ends with reference to recent work on amorphisation through pressure pointing to new aspects of material behaviour and to some new and possibly surprising variants of otherwise familiar phase diagrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号